Maria Sarno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317287/publications.pdf

Version: 2024-02-01

		201674	254184
86	2,199	27	43
papers	citations	h-index	g-index
86	86	86	3234
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS ₂ @oleylamine (Ma•Mo, W). Chemistry of Materials, 2011, 23, 3879-3885.	6.7	293
2	Multiwalled carbon nanotube films as small-sized temperature sensors. Journal of Applied Physics, 2009, 105, .	2.5	103
3	Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results. ISRN Tribology, 2013, 2013, 1-9.	0.4	101
4	Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Applied Surface Science, 2019, 474, 135-146.	6.1	71
5	Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 2015, 5, 27874-27886.	3.6	67
6	Oil Lubricant Tribological Behaviour Improvement Through Dispersion of Few Layer Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2014, 14, 4960-4968.	0.9	54
7	High activity and selectivity immobilized lipase on Fe 3 O 4 nanoparticles for banana flavour synthesis. Process Biochemistry, 2017, 56, 98-108.	3.7	54
8	Biodiesel production from waste cooking oil. Green Processing and Synthesis, 2019, 8, 828-836.	3.4	54
9	New â€~chimie douce' approach to the synthesis of hybrid nanosheets of MoS ₂ on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24, 125601.	2.6	51
10	Field emission properties of as-grown multiwalled carbon nanotube films. Carbon, 2012, 50, 163-169.	10.3	47
11	Active biocatalyst for biodiesel production from spent coffee ground. Bioresource Technology, 2018, 266, 431-438.	9.6	46
12	Optimized procedure for the preparation of an enzymatic nanocatalyst to produce a bio-lubricant from waste cooking oil. Chemical Engineering Journal, 2019, 377, 120273.	12.7	46
13	Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation. Nanotechnology, 2011, 22, 265613.	2.6	44
14	High hydrogen production rate on RuS2@MoS2 hybrid nanocatalyst by PEM electrolysis. International Journal of Hydrogen Energy, 2019, 44, 4398-4405.	7.1	42
15	Active and stable graphene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting. Electrochemistry Communications, 2020, 111, 106647.	4.7	40
16	Carbon nanotube induced structural and physical property transitions of syndiotactic polypropylene. Nanotechnology, 2007, 18, 275703.	2.6	39
17	Formation of Cellulose Acetate–Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Industrial & Damp; Engineering Chemistry Research, 2015, 54, 8147-8156.	3.7	38
18	Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon, 2013, 55, 10-22.	10.3	34

#	Article	IF	CITATIONS
19	PtRh and PtRh/MoS2 nano-electrocatalysts for methanol oxidation and hydrogen evolution reactions. Chemical Engineering Journal, 2019, 377, 120600.	12.7	34
20	A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles. Lubrication Science, 2022, 34, 1-29.	2.1	34
21	High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. Journal of Physics and Chemistry of Solids, 2016, 99, 138-147.	4.0	33
22	Green and one-step synthesis for Ag/graphene hybrid supercapacitor with remarkable performance. Journal of Physics and Chemistry of Solids, 2018, 120, 241-249.	4.0	33
23	Synthesis of Ordered Layers of Monodisperse CoFe ₂ O ₄ Nanoparticles for Catalyzed Growth of Carbon Nanotubes on Silicon Substrate. Chemistry of Materials, 2009, 21, 4851-4858.	6.7	31
24	SC-CO2-assisted process for a high energy density aerogel supercapacitor: the effect of GO loading. Nanotechnology, 2017, 28, 204001.	2.6	31
25	Electrochemical Applications of Magnetic Core–Shell Graphene-Coated FeCo Nanoparticles. Industrial & & amp; Engineering Chemistry Research, 2016, 55, 3157-3166.	3.7	28
26	Nanotechnology in energy storage: the supercapacitors. Studies in Surface Science and Catalysis, 2020, 179, 431-458.	1.5	28
27	Hydrocarbon Decomposition in Alumina Membrane: An Effective Way to Produce Carbon Nanotubes Bundles. Journal of Nanoscience and Nanotechnology, 2004, 4, 779-787.	0.9	27
28	Selective formation of carbon nanotubes over Co-modified beta zeolite by CCVD. Carbon, 2005, 43, 631-640.	10.3	27
29	Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 66-71.	2.7	26
30	Supercapacitor Electrodes Made of Exhausted Activated Carbon-Derived SiC Nanoparticles Coated by Graphene. Industrial & Engineering Chemistry Research, 2016, 55, 6025-6035.	3.7	26
31	Supercritical CO 2 processing to improve the electrochemical properties of graphene oxide. Journal of Supercritical Fluids, 2016, 118, 119-127.	3.2	26
32	Candida rugosa lipase for the biodiesel production from renewable sources. Renewable Energy, 2020, 162, 124-133.	8.9	26
33	Superconducting properties of Nb thin films deposited on porous silicon templates. Journal of Applied Physics, 2008, 104, 083917.	2.5	25
34	A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil. Journal of Molecular Catalysis A, 2013, 366, 303-314.	4.8	25
35	Continuous flow HER and MOR evaluation of a new Pt/Pd/Co nano electrocatalyst. Applied Surface Science, 2018, 459, 105-113.	6.1	25
36	Metal–metal oxide nanostructure supported on graphene oxide as a multifunctional electro-catalyst for simultaneous detection of hydrazine and hydroxylamine. Electrochemistry Communications, 2019, 107, 106510.	4.7	24

#	Article	IF	CITATIONS
37	Much enhanced electrocatalysis of Pt/PtO 2 and low platinum loading Pt/PtO 2 -Fe 3 O 4 dumbbell nanoparticles. International Journal of Hydrogen Energy, 2017, 42, 23631-23638.	7.1	22
38	One-step "green―synthesis of dispersable carbon quantum dots/poly (methyl methacrylate) nanocomposites for tribological applications. Tribology International, 2020, 148, 106311.	5.9	22
39	Effects of alumina phases and process parameters on the multiwalled carbon nanotubes growth. Diamond and Related Materials, 2007, 16, 1144-1149.	3.9	21
40	Evaluating the effects of operating conditions on the quantity, quality and catalyzed growth mechanisms of CNTs. Journal of Molecular Catalysis A, 2012, 357, 26-38.	4.8	21
41	rGO/GO Nanosheets in Tribology: From the State of the Art to the Future Prospective. Lubricants, 2020, 8, 31.	2.9	21
42	Development and characterization of antitumoral electrospun polycaprolactone/functionalized Fe3O4 hybrid membranes. Materials Today Chemistry, 2020, 17, 100309.	3.5	21
43	Selective graphene covering of monodispersed magnetic nanoparticles. Chemical Engineering Journal, 2014, 246, 27-38.	12.7	19
44	Multiâ€walled carbon nanotube films for the measurement of the alcoholic concentration. Micro and Nano Letters, 2019, 14, 304-308.	1.3	19
45	Controlled PtIr nanoalloy as an electro-oxidation platform for methanol reaction and ammonia detection. Nanotechnology, 2019, 30, 394004.	2.6	18
46	Methane electrochemical oxidation at low temperature on Rh single atom/NiO/V2O5 nanocomposite. Applied Catalysis A: General, 2020, 603, 117746.	4.3	17
47	A new nanohybrid for electrocatalytic biodiesel production from waste Amalfi coast lemon seed oil. Fuel, 2020, 267, 117178.	6.4	17
48	Supercapacitors Based on High Surface Area MoS ₂ and MoS ₂ –Fe ₃ O ₄ Nanostructures Supported on Physical Exfoliated Graphite. Journal of Nanoscience and Nanotechnology, 2017, 17, 3735-3743.	0.9	16
49	A one-step SC-CO2 assisted technique to produce compact PVDF-HFP MoS2 supercapacitor device. Journal of Physics and Chemistry of Solids, 2020, 136, 109132.	4.0	15
50	Real time radiation dosimeters based on vertically aligned multiwall carbon nanotubes and graphene. Nanotechnology, 2013, 24, 075704.	2.6	14
51	Effect of the amount of nickel sulphide, molybdenum disulphide and carbon nanosupport on a Tafel slope and overpotential optimization. Nanotechnology, 2017, 28, 214003.	2.6	13
52	Single-Atom Catalysts for the Electro-Reduction of CO2 to Syngas with a Tunable CO/H2 Ratio: A Review. Catalysts, 2022, 12, 275.	3.5	13
53	Cold Wall Chemical Vapor Deposition Graphene-Based Conductive Tunable Film Barrier. Industrial & Engineering Chemistry Research, 2018, 57, 4895-4906.	3.7	12
54	One-step nanohybrid synthesis in waste cooking oil, for direct lower environmental impact and stable lubricant formulation. Tribology International, 2019, 135, 355-367.	5.9	12

#	Article	IF	Citations
55	Influence of citric acid and oleic acid coating on the dc magnetic properties of Fe3O4 magnetic nanoparticles. Materials Today: Proceedings, 2020, 20, 21-24.	1.8	12
56	Wide characterisation to compare conventional and highly effective microwave purification and functionalization of multi-wall carbon nanotubes. Thin Solid Films, 2011, 519, 2121-2131.	1.8	11
57	G_Fe3O4/Ag supporting Candida rugosa lipase for the "green―synthesis of pomegranate seed oil derived liquid wax esters. Applied Surface Science, 2020, 510, 145481.	6.1	11
58	Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 1176-1185.	0.9	10
59	Dopamine sensor in real sample based on thermal plasma silicon carbide nanopowders. Journal of Physics and Chemistry of Solids, 2019, 131, 213-222.	4.0	10
60	New nano-biocatalyst for 4-chlorophenols removal from wastewater. Materials Today: Proceedings, 2020, 20, 74-81.	1.8	10
61	A Nickel/Palladium/Ruthenium-Graphene based nanocatalyst for selective catalytic hydrogenation of vegetable oils. Industrial Crops and Products, 2021, 170, 113815.	5.2	9
62	Ru and Os based new electrode for electrochemical flow supercapacitors. Chemical Engineering Journal, 2019, 377, 120050.	12.7	8
63	Characterization of Nanocarbons Produced by CVD of Ethylene in Alumina or Alumino-Silicate Matrices. Advanced Engineering Materials, 2004, 6, 804-811.	3.5	7
64	CNTs tuning and vertical alignment in anodic aluminium oxide membrane. Journal of Natural Gas Chemistry, 2012, 21, 639-646.	1.8	7
65	Influence of the catalyst-nanotube spacing on the synthesis of polymer-functionalized multiwalled carbon nanotubes by "grafting from―approach. Journal of Polymer Research, 2014, 21, 1.	2.4	6
66	AuAg/ZnO nanocatalyst for CO2 valorization and H2 and CO electrochemical production. Journal of CO2 Utilization, 2020, 39, 101179.	6.8	6
67	A New Route for Low Pressure and Temperature CWAO: A PtRu/MoS2_Hyper-Crosslinked Nanocomposite. Nanomaterials, 2019, 9, 1477.	4.1	5
68	Ag/GO nanocatalysts for N-alkylation. Materials Today: Proceedings, 2020, 20, 16-20.	1.8	4
69	Novel Pt-Ni/NiO/Ni2O3 based electrodes for electrocatalytic biodiesel production from waste palm oil. Materials Today: Proceedings, 2020, 20, 69-73.	1.8	4
70	High performance PVDF HFP_RuO2 supercapacitors production by supercritical drying. Journal of Supercritical Fluids, 2021, 176, 105323.	3.2	4
71	Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid. Energies, 2022, 15, 3059.	3.1	4
72	A new nano-catalyst for sawdust hydrolysis. Applied Catalysis A: General, 2020, 602, 117686.	4.3	3

#	Article	IF	CITATIONS
73	Anti-Friction and Anti-Wear Surfactant-Assisted Nano-Carbons Stable Formulations for Easy Industrialization. Tribology Online, 2021, 16, 1-15.	0.9	3
74	Selfâ€Suspended Nanoparticles for Nâ€Alkylation Reactions: A New Concept for Catalysis. ChemistryOpen, 2019, 8, 520-531.	1.9	2
75	A Tribochemical Boost for Cu Based Lubricant Nano-Additive. Key Engineering Materials, 0, 813, 292-297.	0.4	2
76	Catalytic Hydrogenation of Acetone to Isopropanol on Bimetallic Silver-Gold Nanocatalyst. Key Engineering Materials, 2019, 813, 98-103.	0.4	2
77	A new nanohybrid for electrochemical removal of humic acids and Cr(VI). Water and Environment Journal, 2020, 34, 131-138.	2.2	2
78	"Green―Synthesis of Nanocarbons for Reduced Friction and Wear. Lubricants, 2020, 8, 13.	2.9	2
79	Easy and Oneâ€Step Synthesis of Ir Single Atom Doped PPy Nanoparticles for Highly Active Nâ€Alkylation Reaction. European Journal of Inorganic Chemistry, 2021, 2021, 644-653.	2.0	2
80	Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. Inorganic Chemistry Communication, 2021, 131, 108790.	3.9	2
81	A New Nanocomposite from Vesuvian Slope Pinecones for Azo-Dyes Removal. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 1965-1976.	3.7	2
82	Cold Wall CVD Graphene-Based Transparent Electrode for Solar Cells. Key Engineering Materials, 2019, 813, 310-315.	0.4	1
83	PVDF HFP_RuO2 Nanocomposite Aerogels Produced by Supercritical Drying for Electrochemical Oxidation of Model Tannery Wastewaters. Nanomaterials, 2021, 11, 1436.	4.1	1
84	Silver Decorated Graphene-Polyvinyl Alcohol Hybrid Hydrogel as Catalyst for Benzonitrile Conversion. Advanced Science Letters, 2017, 23, 5980-5983.	0.2	1
85	Improving electrical conductivity of leather surface: a new technology versus industrial applications. Nano Express, 2020, 1, 010032.	2.4	О

Role of disorder in the superconducting proximity effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>a</mml:mi><mml:mtext>a^'</mml:mtext><mml:mtext><mml:ms2b><mnd:mi>NdNi bilayers. Physical Review B, 2021, 104, .