Richard Jäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3172573/publications.pdf Version: 2024-02-01

RICHARD LÃBER

#	Article	IF	CITATIONS
1	New Perspectives for Whole Genome Amplification in Forensic STR Analysis. International Journal of Molecular Sciences, 2022, 23, 7090.	4.1	7
2	Ribosomal DNA as target for the assessment of DNA degradation of human and canine DNA. Legal Medicine, 2021, 48, 101819.	1.3	2
3	DNA profiling of single sperm cells after whole genome amplification. Forensic Science International: Reports, 2021, 4, 100240.	0.8	6
4	Evaluation of STR profiles of single telogen hairs using probabilistic methods. Forensic Science International: Genetics Supplement Series, 2019, 7, 454-456.	0.3	0
5	The Unfolded Protein Response in Breast Cancer. Cancers, 2018, 10, 344.	3.7	62
6	Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications, 2018, 9, 3267.	12.8	192
7	DNA profiling of sperm cells by using micromanipulation and whole genome amplification. Forensic Science International: Genetics Supplement Series, 2017, 6, e497-e499.	0.3	7
8	Induction of Autophagy. , 2015, , 91-101.		7
9	Methods for Studying ER Stress and UPR Markers in Human Cells. Methods in Molecular Biology, 2015, 1292, 3-18.	0.9	41
10	New roles for old enzymes: killer caspases as the engine of cell behavior changes. Frontiers in Physiology, 2014, 5, 149.	2.8	70
11	Regulation of apoptosis by heat shock proteins. IUBMB Life, 2014, 66, 327-338.	3.4	107
12	Endoplasmic Reticulum Stress and the Unfolded Protein Response: Targeting the Achilles Heel of Multiple Myeloma. Molecular Cancer Therapeutics, 2013, 12, 831-843.	4.1	144
13	Mitochondrial Regulation of Cell-Death. , 2013, , 33-60.		1
14	"Dead Cells Talkingâ€: The Silent Form of Cell Death Is Not so Quiet. Biochemistry Research International, 2012, 2012, 1-8.	3.3	20
15	Biology of the Endoplasmic Reticulum. , 2012, , 3-22.		10
16	ER Stress Signaling Pathways in Cell Survival and Death. , 2012, , 41-73.		2
17	Stress management at the ER: Regulators of ER stress-induced apoptosis. , 2012, 134, 306-316.		330
18	The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell, 2012, 104, 259-270.	2.0	176

Richard JÃ**g**er

#	Article	IF	CITATIONS
19	Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells. BMC Cancer, 2010, 10, 192.	2.6	20
20	Loss of transcription factor APâ€⊋gamma/TFAP2C impairs branching morphogenesis of the murine mammary gland. Developmental Dynamics, 2010, 239, 1027-1033.	1.8	11
21	The Enigmatic Roles of Caspases in Tumor Development. Cancers, 2010, 2, 1952-1979.	3.7	48
22	Sustained Platelet-Derived Growth Factor Receptor α Signaling in Osteoblasts Results in Craniosynostosis by Overactivating the Phospholipase C-γ Pathway. Molecular and Cellular Biology, 2009, 29, 881-891.	2.3	41
23	An activating mutation in the PDGF receptor alpha results in embryonic lethality caused by malformation of the vascular system. Developmental Dynamics, 2009, 238, 1064-1072.	1.8	5
24	AP-2α regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase. BMC Biology, 2009, 7, 25.	3.8	10
25	Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes. BMC Research Notes, 2008, 1, 29.	1.4	7
26	Suprabasal BCL-2 expression does not sensitize to chemically-induced skin cancer in transgenic mice. Anticancer Research, 2008, 28, 2825-9.	1.1	3
27	Enhanced purification of cellâ€permeant Cre and germline transmission after transduction into mouse embryonic stem cells. Genesis, 2007, 45, 508-517.	1.6	34
28	Targeting the death machinery in mammary epithelial cells: Implications for breast cancer from transgenic and tissue culture experiments. Critical Reviews in Oncology/Hematology, 2007, 63, 231-240.	4.4	7
29	Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation, 2007, 75, 580-591.	1.9	47
30	The AP-2 family of transcription factors. Genome Biology, 2005, 6, 246.	9.6	357
31	Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Modern Pathology, 2005, 18, 431-438.	5.5	47
32	Transcription factor APâ€2γ, a novel marker of gonocytes and seminomatous germ cell tumors. International Journal of Cancer, 2005, 115, 470-477.	5.1	86
33	Dual role of AP-2? in ErbB-2-induced mammary tumorigenesis. Breast Cancer Research and Treatment, 2005, 90, 273-280.	2.5	29
34	Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12459-12464.	7.1	181
35	Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Research, 2005, 25, 3191-6.	1.1	26
36	Cell type-specific conditional regulation of the c-myc proto-oncogene by combining Cre/loxP recombination and tamoxifen-mediated activation. Genesis, 2004, 38, 145-150.	1.6	12

Richard JÃ**ë**er

#	Article	IF	CITATIONS
37	Role of DDC-4/sFRP-4, a secreted Frizzled-related protein, at the onset of apoptosis in mammary involution. Cell Death and Differentiation, 2003, 10, 528-538.	11.2	44
38	Transcription factor AP-2gamma stimulates proliferation and apoptosis and impairs differentiation in a transgenic model. Molecular Cancer Research, 2003, 1, 921-9.	3.4	48
39	Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. Journal of Cell Science, 2002, 115, 25-37.	2.0	80
40	Mouse mammary gland involution is associated with cytochrome c release and caspase activation. Mechanisms of Development, 2001, 104, 89-98.	1.7	29
41	Loss of anti-mitotic effects of Bcl-2 with retention of anti-apoptotic activity during tumor progression in a mouse model. Oncogene, 1999, 18, 6589-6596.	5.9	47
42	Bcl-2 expression delays mammary tumor development in dimethylbenz(a)anthracene-treated transgenic mice. Oncogene, 1999, 18, 6597-6604.	5.9	49
43	Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene, 1997, 15, 1787-1795.	5.9	146
44	The Human Ubiquitin C Promoter Directs High Ubiquitous Expression of Transgenes in Mice. Nucleic Acids Research, 1996, 24, 1787-1788.	14.5	190