Odile Barbara Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3172494/publications.pdf

Version: 2024-02-01

55 papers

2,149 citations

279798 23 h-index 243625 44 g-index

74 all docs

74 docs citations

74 times ranked 2406 citing authors

#	Article	IF	CITATIONS
1	Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (United Kingdom), 2012, 158, 1005-1015.	1.8	497
2	Description and Nomenclature of <i>Neisseria meningitidis </i> Capsule Locus. Emerging Infectious Diseases, 2013, 19, 566-573.	4.3	259
3	Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria. PLoS Pathogens, 2009, 5, e1000400.	4.7	170
4	Resolution of a Meningococcal Disease Outbreak from Whole-Genome Sequence Data with Rapid Web-Based Analysis Methods. Journal of Clinical Microbiology, 2012, 50, 3046-3053.	3.9	72
5	Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infectious Diseases, The, 2015, 15, 1420-1428.	9.1	63
6	Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology (United Kingdom), 2011, 157, 1446-1456.	1.8	58
7	Identifying Neisseria Species by Use of the 50S Ribosomal Protein L6 (<i>rplF</i>) Gene. Journal of Clinical Microbiology, 2014, 52, 1375-1381.	3.9	55
8	Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. Journal of Infection, 2016, 73, 578-587.	3.3	54
9	Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. MBio, 2020, 11 , .	4.1	47
10	Identification of Novel Neisseria gonorrhoeae Lineages Harboring Resistance Plasmids in Coastal Kenya. Journal of Infectious Diseases, 2018, 218, 801-808.	4.0	40
11	Distribution and diversity of the haemoglobin–haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria. Microbiology (United Kingdom), 2013, 159, 1920-1930.	1.8	39
12	High diversity of invasive Haemophilus influenzae isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsl gene. Journal of Infection, 2019, 79, 7-14.	3.3	39
13	Population and Functional Genomics of Neisseria Revealed with Gene-by-Gene Approaches. Journal of Clinical Microbiology, 2016, 54, 1949-1955.	3.9	38
14	Neisseria gonorrhoeae Population Genomics: Use of the Gonococcal Core Genome to Improve Surveillance of Antimicrobial Resistance. Journal of Infectious Diseases, 2020, 222, 1816-1825.	4.0	36
15	Epidemiological Evidence for the Role of the Hemoglobin Receptor, HmbR, in Meningococcal Virulence. Journal of Infectious Diseases, 2009, 200, 94-98.	4.0	34
16	Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology (United Kingdom), 2011, 157, 2181-2195.	1.8	32
17	Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Scientific Reports, 2016, 6, 21015.	3.3	32
18	Household transmission of Neisseria meningitidis in the African meningitis belt: a longitudinal cohort study. The Lancet Global Health, 2016, 4, e989-e995.	6.3	30

#	Article	IF	Citations
19	Genomic characterization of novel Neisseria species. Scientific Reports, 2019, 9, 13742.	3.3	29
20	Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. Microbiology (United Kingdom), 2010, 156, 1384-1393.	1.8	28
21	Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC Genomics, 2018, 19, 130.	2.8	27
22	Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3585-3593.	1.7	27
23	Genomic analysis of urogenital and rectal <i>Neisseria meningitidis</i> isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sexually Transmitted Infections, 2017, 93, 445-451.	1.9	26
24	Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species. BMC Microbiology, 2008, 8, 66.	3.3	25
25	Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Medicine, 2021, 13, 51.	8.2	25
26	Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1–4 cross-sectional survey results. Lancet Infectious Diseases, The, 2021, 21, 677-687.	9.1	24
27	Acquisition of the capsule locus by horizontal gene transfer in Neisseria meningitidis is often accompanied by the loss of UDP-GalNAc synthesis. Scientific Reports, 2017, 7, 44442.	3.3	23
28	Neisseria genomics: current status and future perspectives. Pathogens and Disease, 2017, 75, .	2.0	23
29	Association of Neisseria gonorrhoeae Plasmids With Distinct Lineages and The Economic Status of Their Country of Origin. Journal of Infectious Diseases, 2020, 222, 1826-1836.	4.0	22
30	Genomic Analysis of the Evolution and Global Spread of Hyper-invasive Meningococcal Lineage 5. EBioMedicine, 2015, 2, 234-243.	6.1	20
31	Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme. Clinical Microbiology and Infection, 2022, 28, 1649.e1-1649.e8.	6.0	20
32	Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa. BMC Microbiology, 2017, 17, 40.	3.3	17
33	Toward a Global Genomic Epidemiology of Meningococcal Disease. Journal of Infectious Diseases, 2019, 220, S266-S273.	4.0	16
34	Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genetics, 2019, 15, e1008532.	3.5	16
35	Characterization of capsule genes in non-pathogenic Neisseria species. Microbial Genomics, 2018, 4, .	2.0	16
36	Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics, 2017, 18, 398.	2.8	15

#	Article	IF	CITATIONS
37	Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine, 2021, 65, 103274.	6.1	15
38	Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathogens, 2021, 17, e1009992.	4.7	15
39	Integrated Bioinformatic Analyses and Immune Characterization of New Neisseria gonorrhoeae Vaccine Antigens Expressed during Natural Mucosal Infection. Vaccines, 2019, 7, 153.	4.4	14
40	The global meningitis genome partnership. Journal of Infection, 2020, 81, 510-520.	3.3	13
41	Genomic Analysis of Serogroup YNeisseria meningitidisIsolates Reveals Extensive Similarities Between Carriage-Associated and Disease-Associated Organisms. Journal of Infectious Diseases, 2016, 213, 1777-1785.	4.0	12
42	Development of a PCR algorithm to detect and characterize Neisseria meningitidis carriage isolates in the African meningitis belt. PLoS ONE, 2018, 13, e0206453.	2.5	12
43	The Genus Neisseria. , 2014, , 881-900.		12
44	Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage. MBio, 2020, 11 , .	4.1	11
45	The Neisseria gonorrhoeae Accessory Genome and Its Association with the Core Genome and Antimicrobial Resistance. Microbiology Spectrum, 2022, 10, .	3.0	9
46	Evolution of Sequence Type 4821 Clonal Complex Hyperinvasive and Quinolone-Resistant Meningococci. Emerging Infectious Diseases, 2021, 27, 1110-1122.	4.3	7
47	Invasive meningococcal disease in Shanghai, China from 1950 to 2016: implications for serogroup B vaccine implementation. Scientific Reports, 2018, 8, 12334.	3.3	6
48	Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Research, 2019, 4, 99.	1.8	6
49	Typing complex meningococcal vaccines to understand diversity and population structure of key vaccine antigens. Wellcome Open Research, 2018, 3, 151.	1.8	5
50	Genomic epidemiology of group B streptococci spanning 10 years in an Irish maternity hospital, 2008–2017. Journal of Infection, 2021, 83, 37-45.	3.3	4
51	Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Faculty Reviews, 2021, 10, 65.	3.9	4
52	Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Research, 2019, 4, 99.	1.8	3
53	Complete genome and methylome analysis of Neisseria meningitidis associated with increased serogroup Y disease. Scientific Reports, 2020, 10, 3644.	3.3	2
54	Genome Sequencing and Interrogation of Genome Databases: A Guide to Neisseria meningitidis Genomics. Methods in Molecular Biology, 2019, 1969, 51-82.	0.9	1

#	Article	IF	CITATIONS
55	Mobile antimicrobial resistance in Neisseria gonorrhoeae. Access Microbiology, 2022, 4, .	0.5	0