
David P Hinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3171259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nighttime convection in water-ice clouds at high northern latitudes on Mars. Icarus, 2022, 371, 114693.	1.1	5
2	Detection of Radio Thermal Emission from the Kuiper Belt Object (486958) Arrokoth during the New Horizons Encounter. Planetary Science Journal, 2022, 3, 109.	1.5	3
3	Pre- and Post-entry, Descent and Landing Assessment of the Martian Atmosphere for the Mars 2020 Rover. Planetary Science Journal, 2022, 3, 147.	1.5	4
4	Baroclinic waves in the northern hemisphere of Mars as observed by the MRO Mars Climate Sounder and the MGS Thermal Emission Spectrometer. Icarus, 2021, 357, 114152.	1.1	14
5	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	1.5	6
6	Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. Astronomical Journal, 2020, 159, 274.	1.9	12
7	The martian daytime convective boundary layer: Results from radio occultation measurements and a mesoscale model. Icarus, 2019, 326, 105-122.	1.1	15
8	An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus, 2018, 307, 17-24.	1.1	30
9	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	1.1	47
10	Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus, 2018, 300, 174-199.	1.1	90
11	The Lymanâ€Î± Sky Background as Observed by New Horizons. Geophysical Research Letters, 2018, 45, 8022-8028.	1.5	19
12	Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geoscience, 2017, 10, 652-657.	5.4	32
13	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	6.0	201
14	Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES. Icarus, 2015, 251, 26-49.	1.1	16
15	Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: A nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder. Icarus, 2014, 243, 91-103.	1.1	28
16	The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 2014, 233, 66-82.	1.1	47
17	A clear view of the multifaceted dayside ionosphere of Mars. Geophysical Research Letters, 2012, 39, .	1.5	42
18	Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations. Space Science Reviews, 2012, 170, 793-835.	3.7	58

DAVID P HINSON

#	Article	IF	CITATIONS
19	A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: Short-period baroclinic waves and dust storms. Icarus, 2012, 219, 307-320.	1.1	33
20	Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations. , 2012, , 793-835.		4
21	The Radioscience Experiment on New Horizons. , 2011, , .		2
22	Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus, 2010, 206, 290-305.	1.1	54
23	Atmospheric risk assessment for the Mars Science Laboratory Entry, Descent, and Landing system. , 2010, , .		14
24	New Horizons: Anticipated Scientific Investigations atÂtheÂPluto System. Space Science Reviews, 2008, 140, 93-127.	3.7	74
25	Global and seasonal distribution of gravity wave activity in Mars' lower atmosphere derived from MGS radio occultation data. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	81
26	Effects of Solar Flares on the lonosphere of Mars. Science, 2006, 311, 1135-1138.	6.0	147
27	Ionospheric effects upon a satellite navigation system at Mars. Radio Science, 2004, 39, n/a-n/a.	0.8	34
28	Simultaneous ionospheric variability on Earth and Mars. Journal of Geophysical Research, 2003, 108, .	3.3	61
29	Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit. Journal of Geophysical Research, 2001, 106, 23327-23348.	3.3	98
30	Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications. Geophysical Research Letters, 2001, 28, 3091-3094.	1.5	154
31	A comparison of MGS Phase 1 aerobraking radio occultation data and the NASA Ames Mars GCM. Journal of Geophysical Research, 2000, 105, 17601-17615.	3.3	11
32	Jupiter's ionosphere: New results from Voyager 2 radio occultation measurements. Journal of Geophysical Research, 1998, 103, 9505-9520.	3.3	83
33	Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation. Radio Science, 1997, 32, 411-423.	0.8	96
34	Magellan Radio Occultation Measurements of Atmospheric Waves on Venus. Icarus, 1995, 114, 310-327.	1.1	97
35	Radio Occultation Studies of the Venus Atmosphere with the Magellan Spacecraft. Icarus, 1994, 110, 79-94.	1.1	92
36	Inertio-Gravity Waves in the Atmosphere of Neptune. Icarus, 1993, 105, 142-161.	1.1	20

DAVID P HINSON

#	Article	IF	CITATIONS
37	Radio science investigations with Mars Observer. Journal of Geophysical Research, 1992, 97, 7759-7779.	3.3	61
38	Equatorial waves in the stratosphere of Uranus. Icarus, 1991, 94, 64-91.	1.1	22
39	Past and future of radio occultation studies of planetary atmospheres. Advances in Space Research, 1987, 7, 29-32.	1.2	4
40	Strong scintillations during atmospheric occultations: Theoretical intensity spectra. Radio Science, 1986, 21, 257-270.	0.8	12
41	Magnetic field orientations in Saturn's upper ionosphere inferred from Voyager radio occultations. Journal of Geophysical Research, 1984, 89, 65-73.	3.3	10
42	Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation. Icarus, 1983, 54, 337-352.	1.1	56
43	Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations. Journal of Geophysical Research, 1982, 87, 5275-5289	3.3	13