
Qishen Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317122/publications.pdf Version: 2024-02-01

OISHEN PANC

#	Article	IF	CITATIONS
1	The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Current Biology, 2020, 30, 408-420.e5.	3.9	44
2	Fancd2-deficient hematopoietic stem and progenitor cells depend on augmented mitochondrial translation for survival and proliferation. Stem Cell Research, 2019, 40, 101550.	0.7	10
3	The non-homologous end-joining activity is required for Fanconi anemia fetal HSC maintenance. Stem Cell Research and Therapy, 2019, 10, 114.	5.5	4
4	Inactivation of the NHEJ Activity of DNA-PKcs Prevents Fanconi Anemia Pre-Leukemic HSC Expansion. International Journal of Stem Cells, 2019, 12, 457-462.	1.8	3
5	CHEK1 coordinates DNA damage signaling and meiotic progression in the male germline of mice. Human Molecular Genetics, 2018, 27, 1136-1149.	2.9	26
6	Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation. Stem Cell Reports, 2018, 10, 339-346.	4.8	18
7	A non-myeloablative conditioning approach for long-term engraftment of human and mouse hematopoietic stem cells. Leukemia, 2018, 32, 2041-2046.	7.2	8
8	A small molecule p53 activator attenuates Fanconi anemia leukemic stem cell proliferation. Stem Cell Research and Therapy, 2018, 9, 145.	5.5	2
9	Cobblestone Area-forming Cell Assay of Mouse Bone Marrow Hematopoietic Stem Cells. Bio-protocol, 2018, 8, e2824.	0.4	2
10	InÂVivo RNAi Screen Unveils PPARγ as a Regulator of Hematopoietic Stem Cell Homeostasis. Stem Cell Reports, 2017, 8, 1242-1255.	4.8	20
11	Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Scientific Reports, 2017, 7, 45626.	3.3	32
12	SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells. Stem Cells, 2016, 34, 960-971.	3.2	26
13	Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells. Scientific Reports, 2016, 6, 22167.	3.3	20
14	Fancb deficiency impairs hematopoietic stem cell function. Scientific Reports, 2016, 5, 18127.	3.3	14
15	Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Reports, 2016, 17, 1141-1157.	6.4	46
16	Loss of <i>Fancc</i> Impairs Antibody-Secreting Cell Differentiation in Mice through Deregulating the Wnt Signaling Pathway. Journal of Immunology, 2016, 196, 2986-2994.	0.8	9
17	Loss of <i>Faap20</i> Causes Hematopoietic Stem and Progenitor Cell Depletion in Mice Under Genotoxic Stress. Stem Cells, 2015, 33, 2320-2330.	3.2	7
18	Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling. Stem Cells, 2015, 33, 3382-3396.	3.2	16

QISHEN PANG

#	Article	IF	CITATIONS
19	Transcriptional profiling of Foxo3a and Fancd2 regulated genes in mouse hematopoietic stem cells. Genomics Data, 2015, 4, 148-149.	1.3	3
20	FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Human Molecular Genetics, 2015, 24, 5234-5249.	2.9	53
21	Fancd2 Is Required for Nuclear Retention of Foxo3a in Hematopoietic Stem Cell Maintenance. Journal of Biological Chemistry, 2015, 290, 2715-2727.	3.4	16
22	Hyper-Active Non-Homologous End Joining Selects for Synthetic Lethality Resistant and Pathological Hematopoietic Stem Cells. Blood, 2015, 126, 5400-5400.	1.4	1
23	KIT Blockade Is Sufficient to Sustain Donor Hematopoietic Stem Cell Engraftment in Fanconi Anemia Mice. Blood, 2015, 126, 1206-1206.	1.4	0
24	Differential Response of Fanconi Anemia Hematopoietic Stem and Progenitor Cells to Oxidative and Oncogenic Stresses. Blood, 2014, 124, 3593-3593.	1.4	0
25	Inflammation-Mediated Notch Signaling Skews Fanconi Anemia Hematopoietic Stem Cell Differentiation. Journal of Immunology, 2013, 191, 2806-2817.	0.8	18
26	Fancd2 Deficiency Impairs Autophagy Via Deregulating The Ampk/Foxo3a/Akt Pathway. Blood, 2013, 122, 3713-3713.	1.4	9
27	Deletion Of Fanca Or Fancd2 Dysregulates Treg Activity and Exacerbates Gvhd In Mice. Blood, 2013, 122, 3239-3239.	1.4	0
28	HSCs: stressing out over ROS. Blood, 2011, 118, 2932-2934.	1.4	9
29	Targeting mTOR by a New Generation of Kinase Inhibitors Sensitizes Leukemia Cells for Chemotherapy Via Suppressing FANCD2 Expression. Blood, 2011, 118, 1514-1514.	1.4	0
30	Selective Damage to Antioxidant Gene Promoters in FA Cells. Blood, 2011, 118, 2413-2413.	1.4	14
31	Fanconi anemia proteins and endogenous stresses. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 668, 42-53.	1.0	43
32	A Cytoplasmic FANCA-FANCC Complex Interacts and Stabilizes the Leukemic NPMc Protein Blood, 2009, 114, 3098-3098.	1.4	0
33	Oxidative Stress in Fanconi Anemia Hematopoiesis and Disease Progression. Antioxidants and Redox Signaling, 2008, 10, 1909-1921.	5.4	112
34	TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. Journal of Clinical Investigation, 2007, 117, 3283-3295.	8.2	122
35	Nucleophosmin Regulates Differentiation, Cell Cycle Progression, and Stress Response in Hematopoietic Progenitor Cells Blood, 2005, 106, 312-312.	1.4	0