Tao Che

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3171213/publications.pdf Version: 2024-02-01

	393982	525886
3,442	19	27
citations	h-index	g-index
32	32	4411
docs citations	times ranked	citing authors
	citations 32	3,44219citationsh-index3232

#	Article	IF	CITATIONS
1	Ultra-large library docking for discovering new chemotypes. Nature, 2019, 566, 224-229.	13.7	595
2	Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555, 269-273.	13.7	341
3	Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 2017, 168, 377-389.e12.	13.5	340
4	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	13.5	299
5	TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 2020, 16, 841-849.	3.9	281
6	Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. Cell, 2020, 182, 1574-1588.e19.	13.5	270
7	In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature Chemical Biology, 2017, 13, 529-536.	3.9	230
8	5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell, 2018, 172, 719-730.e14.	13.5	185
9	Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 2020, 579, 609-614.	13.7	184
10	D ₄ dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 2017, 358, 381-386.	6.0	176
11	Structural determinants of 5-HT2B receptor activation and biased agonism. Nature Structural and Molecular Biology, 2018, 25, 787-796.	3.6	116
12	Nanobody-enabled monitoring of kappa opioid receptor states. Nature Communications, 2020, 11, 1145.	5.8	93
13	Biased ligands at opioid receptors: Current status and future directions. Science Signaling, 2021, 14, .	1.6	58
14	Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. ELife, 2021, 10, .	2.8	40
15	Structural Insights Accelerate the Discovery of Opioid Alternatives. Annual Review of Biochemistry, 2021, 90, 739-761.	5.0	33
16	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	2.9	33
17	Predicted Mode of Binding to and Allosteric Modulation of the μ-Opioid Receptor by Kratom's Alkaloids with Reported Antinociception <i>In Vivo</i> . Biochemistry, 2021, 60, 1420-1429.	1.2	26
18	Development of Novel Quinoxaline-Based κ-Opioid Receptor Agonists for the Treatment of Neuroinflammation. Journal of Medicinal Chemistry, 2019, 62, 893-907.	2.9	25

ΤΑΟ CHE

#	Article	IF	CITATIONS
19	Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chemical Neuroscience, 2019, 10, 384-395.	1.7	22
20	Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chemical Neuroscience, 2021, 12, 2661-2678.	1.7	20
21	A promising chemical series of positive allosteric modulators of the μ-opioid receptor that enhance the antinociceptive efficacy of opioids but not their adverse effects. Neuropharmacology, 2021, 195, 108673.	2.0	16
22	Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo. JCI Insight, 2017, 2, .	2.3	14
23	Advances in the Treatment of Chronic Pain by Targeting GPCRs. Biochemistry, 2021, 60, 1401-1412.	1.2	12
24	Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain. Molecules, 2022, 27, 595.	1.7	11
25	Synthesis and Pharmacological Evaluation of Fluorinated Quinoxalineâ€Based κâ€Opioid Receptor (KOR) Agonists Designed for PET Studies. ChemMedChem, 2020, 15, 1834-1853.	1.6	5
26	Enantiomerically Pure Quinolineâ€Based κâ€Opioid Receptor Agonists: Chemoenzymatic Synthesis and Pharmacological Evaluation. ChemMedChem, 2020, 15, 1408-1420.	1.6	2
27	Nanobodies as sensors of GPCR activation and signaling. Methods in Cell Biology, 2021, 166, 161-177.	0.5	1