
Longhai Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum. International Journal of Biological Macromolecules, 2022, 200, 388-396.	7.5	9
2	Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy. ACS Catalysis, 2022, 12, 3033-3040.	11.2	50
3	Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Applied and Environmental Microbiology, 2022, 88, e0249721.	3.1	8
4	Structural analysis and engineering of aldo-keto reductase from glyphosate-resistant Echinochloa colona. Journal of Hazardous Materials, 2022, 436, 129191.	12.4	3
5	Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity. Biochemical and Biophysical Research Communications, 2021, 534, 73-78.	2.1	16
6	General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nature Catalysis, 2021, 4, 425-430.	34.4	92
7	Enhancing PET hydrolytic enzyme activity by fusion of the cellulose–binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 2021, 334, 47-50.	3.8	40
8	Catalytically inactive lytic polysaccharide monooxygenase PcAA14A enhances the enzyme-mediated hydrolysis of polyethylene terephthalate. International Journal of Biological Macromolecules, 2021, 190, 456-462.	7.5	13
9	Structural investigation of a thermostable 1,2-β-mannobiose phosphorylase from Thermoanaerobacter sp. X-514. Biochemical and Biophysical Research Communications, 2021, 579, 54-61.	2.1	6
10	Flavonoid <i>C</i> â€Clycosyltransferases: Function, Evolutionary Relationship, Catalytic Mechanism and Protein Engineering. ChemBioEng Reviews, 2021, 8, 15-26.	4.4	8
11	Biocatalytic Synthesis of Calycosin-7-O-β-D-Glucoside with Uridine Diphosphate–Glucose Regeneration System. Catalysts, 2020, 10, 258.	3.5	6
12	Structural insights into thebaine synthase 2 catalysis. Biochemical and Biophysical Research Communications, 2020, 529, 156-161.	2.1	7
13	Enzymatic degradation of plant biomass and synthetic polymers. Nature Reviews Chemistry, 2020, 4, 114-126.	30.2	213
14	Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. Journal of Biotechnology, 2020, 309, 107-112.	3.8	24
15	Biocatalytic Synthesis of a Novel Bioactive Ginsenoside Using UDP-Glycosyltransferase from Bacillus subtilis 168. Catalysts, 2020, 10, 289.	3.5	6
16	Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 2019, 18, 120.	4.0	39
17	Crystal structure of TchmY from <i>Actinoplanes teichomyceticus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 570-575.	0.8	1
18	Structural insights into the calcium dependence of Stig cyclases. RSC Advances, 2019, 9, 13182-13185.	3.6	2

Longhai Dai

#	Article	IF	CITATIONS
19	Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1351-1359.	2.4	7
20	One-Pot Synthesis of Ginsenoside Rh2 and Bioactive Unnatural Ginsenoside by Coupling Promiscuous Glycosyltransferase from <i>Bacillus subtilis</i> 168 to Sucrose Synthase. Journal of Agricultural and Food Chemistry, 2018, 66, 2830-2837.	5.2	63
21	Pharmacological activities of mogrosides. Future Medicinal Chemistry, 2018, 10, 845-850.	2.3	34
22	Use of a Promiscuous Glycosyltransferase from <i>Bacillus subtilis</i> 168 for the Enzymatic Synthesis of Novel Protopanaxatriol-Type Ginsenosides. Journal of Agricultural and Food Chemistry, 2018, 66, 943-949.	5.2	40
23	Enzymatic Synthesis of Novel Glycyrrhizic Acid Glucosides Using a Promiscuous Bacillus Glycosyltransferase. Catalysts, 2018, 8, 615.	3.5	31
24	Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. Biotechnology for Biofuels, 2018, 11, 290.	6.2	15
25	Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. Journal of Biotechnology, 2017, 248, 69-76.	3.8	64
26	Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2017, 181, 407-423.	2.9	6
27	Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer. Nutrients, 2016, 8, 360.	4.1	20
28	Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from <i>Siraitia grosvenorii</i> . Plant and Cell Physiology, 2016, 57, 1000-1007.	3.1	42
29	Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant and Cell Physiology, 2015, 56, 1172-1182	3.1	76