Longhai Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317114/publications.pdf

Version: 2024-02-01

567281 477307 29 941 15 29 h-index citations g-index papers 29 29 29 862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enzymatic degradation of plant biomass and synthetic polymers. Nature Reviews Chemistry, 2020, 4, 114-126.	30.2	213
2	General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nature Catalysis, 2021, 4, 425-430.	34.4	92
3	Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant and Cell Physiology, 2015, 56, 1172-1182.	3.1	76
4	Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. Journal of Biotechnology, 2017, 248, 69-76.	3.8	64
5	One-Pot Synthesis of Ginsenoside Rh2 and Bioactive Unnatural Ginsenoside by Coupling Promiscuous Glycosyltransferase from <i>Bacillus subtilis</i> 168 to Sucrose Synthase. Journal of Agricultural and Food Chemistry, 2018, 66, 2830-2837.	5.2	63
6	Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy. ACS Catalysis, 2022, 12, 3033-3040.	11.2	50
7	Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from <i>Siraitia grosvenorii</i> . Plant and Cell Physiology, 2016, 57, 1000-1007.	3.1	42
8	Use of a Promiscuous Glycosyltransferase from <i>Bacillus subtilis</i> 168 for the Enzymatic Synthesis of Novel Protopanaxatriol-Type Ginsenosides. Journal of Agricultural and Food Chemistry, 2018, 66, 943-949.	5.2	40
9	Enhancing PET hydrolytic enzyme activity by fusion of the cellulose–binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 2021, 334, 47-50.	3.8	40
10	Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 2019, 18, 120.	4.0	39
11	Pharmacological activities of mogrosides. Future Medicinal Chemistry, 2018, 10, 845-850.	2.3	34
12	Enzymatic Synthesis of Novel Glycyrrhizic Acid Glucosides Using a Promiscuous Bacillus Glycosyltransferase. Catalysts, 2018, 8, 615.	3.5	31
13	Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. Journal of Biotechnology, 2020, 309, 107-112.	3.8	24
14	Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer. Nutrients, 2016, 8, 360.	4.1	20
15	Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity. Biochemical and Biophysical Research Communications, 2021, 534, 73-78.	2.1	16
16	Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. Biotechnology for Biofuels, 2018, 11, 290.	6.2	15
17	Catalytically inactive lytic polysaccharide monooxygenase PcAA14A enhances the enzyme-mediated hydrolysis of polyethylene terephthalate. International Journal of Biological Macromolecules, 2021, 190, 456-462.	7.5	13
18	Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum. International Journal of Biological Macromolecules, 2022, 200, 388-396.	7.5	9

#	Article	IF	CITATIONS
19	Flavonoid <i>C</i> i>â€Glycosyltransferases: Function, Evolutionary Relationship, Catalytic Mechanism and Protein Engineering. ChemBioEng Reviews, 2021, 8, 15-26.	4.4	8
20	Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Applied and Environmental Microbiology, 2022, 88, e0249721.	3.1	8
21	Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1351-1359.	2.4	7
22	Structural insights into thebaine synthase 2 catalysis. Biochemical and Biophysical Research Communications, 2020, 529, 156-161.	2.1	7
23	Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2017, 181, 407-423.	2.9	6
24	Biocatalytic Synthesis of Calycosin-7-O-β-D-Glucoside with Uridine Diphosphate–Glucose Regeneration System. Catalysts, 2020, 10, 258.	3.5	6
25	Biocatalytic Synthesis of a Novel Bioactive Ginsenoside Using UDP-Glycosyltransferase from Bacillus subtilis 168. Catalysts, 2020, 10, 289.	3.5	6
26	Structural investigation of a thermostable 1,2- \hat{l}^2 -mannobiose phosphorylase from Thermoanaerobacter sp. X-514. Biochemical and Biophysical Research Communications, 2021, 579, 54-61.	2.1	6
27	Structural analysis and engineering of aldo-keto reductase from glyphosate-resistant Echinochloa colona. Journal of Hazardous Materials, 2022, 436, 129191.	12.4	3
28	Structural insights into the calcium dependence of Stig cyclases. RSC Advances, 2019, 9, 13182-13185.	3.6	2
29	Crystal structure of TchmY from <i>Actinoplanes teichomyceticus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 570-575.	0.8	1