
Jinguo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3171111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Applied Catalysis B: Environmental, 2017, 204, 374-384.	10.8	141
2	Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental, 2013, 134-135, 198-204.	10.8	135
3	Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets. Chemical Engineering Journal, 2018, 337, 488-498.	6.6	130
4	Bi2WO6-x nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols. Applied Catalysis B: Environmental, 2019, 256, 117874.	10.8	130
5	Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect. Journal of Hazardous Materials, 2019, 363, 214-226.	6.5	119
6	Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Applied Catalysis B: Environmental, 2019, 242, 227-237.	10.8	119
7	Mesoporous yolk–shell SnS2–TiO2 visible photocatalysts with enhanced activity and durability in Cr(vi) reduction. Nanoscale, 2013, 5, 1876.	2.8	105
8	TiO 2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Applied Catalysis B: Environmental, 2016, 187, 115-121.	10.8	105
9	Ordered mesoporous TiO ₂ with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols. Journal of Materials Chemistry A, 2013, 1, 1296-1302.	5.2	90
10	Boosting total oxidation of acetone over spinel MCo2O4 (M = Co, Ni, Cu) hollow mesoporous spheres by cation-substituting effect. Journal of Colloid and Interface Science, 2019, 539, 65-75.	5.0	85
11	Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations. Applied Surface Science, 2018, 462, 760-771.	3.1	77
12	Highly active and selective binary MgO–SiO ₂ catalysts for the production of 1,3-butadiene from ethanol. Catalysis Science and Technology, 2017, 7, 168-180.	2.1	76
13	Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol oxidations. Applied Catalysis B: Environmental, 2016, 195, 141-148.	10.8	72
14	Multitemplates for the Hierarchical Synthesis of Diverse Inorganic Materials. Journal of the American Chemical Society, 2012, 134, 2325-2331.	6.6	68
15	Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming. Journal of Power Sources, 2017, 364, 341-350.	4.0	67
16	Boosting soot combustion efficiencies over CuO–CeO ₂ catalysts with a 3DOM structure. Catalysis Science and Technology, 2016, 6, 7342-7350.	2.1	65
17	Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. Journal of CO2 Utilization, 2019, 33, 242-252.	3.3	64
18	Three-dimensionally ordered macroporous spinel-type MCr ₂ O ₄ (M = Co, Ni,) Tj ETQqC	0 0 rgBT / 2.1	Overlock 107 56

and Technology, 2015, 5, 4594-4601.

JINGUO WANG

#	Article	IF	CITATIONS
19	Ultrafine single-crystal TiOF2nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis. Nanoscale, 2014, 6, 897-902.	2.8	51
20	Hierarchical yolk-shell WO3 microspheres with highly enhanced photoactivity for selective alcohol oxidations. Applied Catalysis B: Environmental, 2017, 218, 825-832.	10.8	49
21	Highly improved acetone oxidation activity over mesoporous hollow nanospherical Mn _x Co _{3â^x} O ₄ solid solutions. Catalysis Science and Technology, 2019, 9, 6379-6390.	2.1	45
22	Highly improved soot combustion performance over synergetic MnxCe1â^²xO2 solid solutions within mesoporous nanosheets. Journal of Colloid and Interface Science, 2020, 577, 355-367.	5.0	40
23	Enhanced soot oxidation activity over CuO/CeO ₂ mesoporous nanosheets. Catalysis Science and Technology, 2019, 9, 1699-1709.	2.1	39
24	Boosting acetone oxidation efficiency over MnO ₂ nanorods by tailoring crystal phases. New Journal of Chemistry, 2019, 43, 19126-19136.	1.4	35
25	Simultaneously generating Bi quantum dot and oxygen vacancy on Bi2MoO6 nanosheets for boosting photocatalytic selective alcohol oxidation. Applied Surface Science, 2022, 575, 151738.	3.1	30
26	Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene. Applied Catalysis A: General, 2019, 577, 1-9.	2.2	29
27	Hierarchical hollow WO3 microspheres with tailored surface oxygen vacancies for boosting photocatalytic selective conversion of biomass-derived alcohols. Applied Surface Science, 2021, 547, 149239.	3.1	24
28	Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory. Applied Surface Science, 2017, 394, 333-339.	3.1	22
29	Mesoporous (001)-TiO ₂ nanocrystals with tailored Ti ³⁺ and surface oxygen vacancies for boosting photocatalytic selective conversion of aromatic alcohols. Catalysis Science and Technology, 2021, 11, 2939-2947.	2.1	21
30	Direct growth of Au nanoparticles on g-C3N4 for photocatalytic selective alcohol oxidations. Inorganic Chemistry Communication, 2019, 109, 107574.	1.8	18
31	Influence of different precursors on isobutene production from bio-ethanol over bifunctional Zn1Zr10Ox catalysts. Applied Catalysis A: General, 2018, 558, 150-160.	2.2	16
32	Synthesis and Photocatalytic Activity of F/TiO2 Nanocrystals with Exposed (001) Facets via a Nonhydrolytic Solvothermal Route. Chinese Journal of Catalysis, 2011, 32, 862-871.	6.9	15
33	The Synergistic Effect to Promote the Direct Conversion of Bioethanol into Isobutene over Ternary Multifunctional Cr _{<i>x</i>} Zn _{<i>y</i>} Zr _{<i>z</i>} O _{<i>n</i>} Catalysts. ChemCatChem. 2017. 9, 1758-1764.	1.8	14
34	Mesoporous (101)-TiO2 nanocrystal with tailored Ti3+ and surface oxygen vacancy for boosting photocatalytic hydrogenation of nitrobenzenes. Catalysis Science and Technology, 0, , .	2.1	13
35	Tailoring the Selectivity of Bioâ€Ethanol Transformation by Tuning the Size of Gold Supported on ZnZr ₁₀ O _x Catalysts. ChemCatChem, 2018, 10, 3969-3973.	1.8	8
36	The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts. Applied Catalysis A: General, 2020, 598, 117565.	2.2	8

JINGUO WANG

#	Article	IF	CITATIONS
37	Interaction of Ethanol with MgO-SiO ₂ Catalysts Studied by TPD Techniques. Chemistry Letters, 2018, 47, 1097-1100.	0.7	7
38	Hierarchical WO ₃ microflowers with tailored oxygen vacancies for boosting photocatalytic dye degradation. New Journal of Chemistry, 2021, 45, 21074-21081.	1.4	6
39	Synergistic Catalysis of PdFe Bimetallic Nanoparticles Supported on SiO ₂ for Hydrogenative Cleavage of C–N Bonds. ACS Applied Nano Materials, 2021, 4, 6020-6029.	2.4	6
40	Bi 2 O 3 quantum dots decorated TiO 2 nanobelt heterojunctions with enhanced visibleâ€light photoactivity. Micro and Nano Letters, 2018, 13, 1734-1738.	0.6	3
41	Highly improved acetone oxidation performance over mesostructured Cu _{<i>x</i>} Ce _{1â^'<i>x</i>} O ₂ hollow nanospheres. New Journal of Chemistry, 2022, 46, 9602-9611.	1.4	3