Li-Na Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3170890/publications.pdf Version: 2024-02-01

Ιι-ΝΑ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Structure/function relationships of bean polysaccharides: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 330-344.	5.4	16
2	Enzymatic interesterification of beef tallow/coconut oil blends to produce a superior margarine base stock. International Journal of Food Science and Technology, 2022, 57, 908-919.	1.3	15
3	The adhesion of the gut microbiota to insoluble dietary fiber from soy hulls promoted the proliferation of probiotics in vitro. LWT - Food Science and Technology, 2022, 153, 112560.	2.5	13
4	Characterization of the structure and properties of the isolating interfacial layer of oil–water emulsions stabilized by soy hull polysaccharide: Effect of pH changes. Food Chemistry, 2022, 370, 131029.	4.2	25
5	Mechanism of interactions between soyasaponins and soybean 7S/11S proteins. Food Chemistry, 2022, 368, 130857.	4.2	14
6	Effects of soy hull polysaccharide on dyslipidemia and pathoglycemia in rats induced by a high-fat-high-sucrose diet. Food Science and Human Wellness, 2022, 11, 49-57.	2.2	16
7	Fabrication and emulsifying properties of non-covalent complexes between soy protein isolate fibrils and soy soluble polysaccharides. Food and Function, 2022, 13, 386-397.	2.1	20
8	Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: Effect on emulsion stability. Food Hydrocolloids, 2022, 124, 107304.	5.6	33
9	Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydrate Polymers, 2022, 278, 118915.	5.1	18
10	Na+/Ca2+ induced the migration of soy hull polysaccharides in the mucus layer in vitro. International Journal of Biological Macromolecules, 2022, 199, 331-340.	3.6	27
11	Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. International Journal of Food Science and Technology, 2022, 57, 3702-3712.	1.3	8
12	Chemical composition and sugar spectroscopy of soy hull polysaccharides obtained by microwaveâ€assisted salt extraction. Journal of Food Processing and Preservation, 2022, 46, .	0.9	1
13	Covering soy polysaccharides gel on the surface of β-cyclodextrin-based metal–organic frameworks. Journal of Materials Science, 2021, 56, 3049-3061.	1.7	18
14	A hierarchical emulsion system stabilized by soyasaponin emulsion droplets. Food and Function, 2021, 12, 10571-10580.	2.1	3
15	The emulsifying stability of soy hull polysaccharides with different molecular weight obtained from membrane-separation technology. International Journal of Food Engineering, 2021, 17, 693-701.	0.7	3
16	The Effect of Natural Soluble Polysaccharides on the Type 2 Diabetes through Modulating Gut Microbiota: A Review. Current Medicinal Chemistry, 2021, 28, 5368-5385.	1.2	5
17	Interactions between gut microbiota and soy hull polysaccharides regulate the air-liquid interfacial activity. Food Hydrocolloids, 2021, 119, 106704.	5.6	11
18	Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. Journal of Food Science and Technology, 2020, 57, 152-162.	1.4	34

Li-Na Yang

#	Article	IF	CITATIONS
19	The production of gel beads of soybean hull polysaccharides loaded with soy isoflavone and their pH-dependent release. Food Chemistry, 2020, 313, 126095.	4.2	30
20	Chemical structure, chain conformation and rheological properties of pectic polysaccharides from soy hulls. International Journal of Biological Macromolecules, 2020, 148, 41-48.	3.6	49
21	Interaction between soyasaponin and soy β-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110707.	2.5	27
22	Oil-water interfacial behavior of soy β-conglycinin–soyasaponin mixtures and their effect on emulsion stability. Food Hydrocolloids, 2020, 101, 105531.	5.6	40
23	Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-IPB signaling pathway. Food and Function, 2020, 11, 5965-5975.	2.1	28
24	Soy glycinin-soyasaponin mixtures at oil–water interface: Interfacial behavior and O/W emulsion stability. Food Chemistry, 2020, 327, 127062.	4.2	40
25	The influence of gut microbiota on the rheological characterization of soy hull polysaccharide and mucin interactions. RSC Advances, 2020, 10, 2830-2840.	1.7	14
26	Chemical Compositions and Prebiotic Activity of Soy Hull Polysaccharides <i>in Vitro</i> . Food Science and Technology Research, 2019, 25, 843-851.	0.3	6
27	Inhibition of DNA‑PK activity sensitizes A549 cells to X‑ray irradiation by inducing the ATM‑dependent DNA damage response. Molecular Medicine Reports, 2018, 17, 7545-7552.	1.1	9