
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3170689/publications.pdf Version: 2024-02-01

IANUISZ M GERICKI

#	Article	IF	CITATIONS
1	Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals. International Journal of Molecular Sciences, 2022, 23, 396.	4.1	7
2	Fast Antioxidant Reaction of Polyphenols and Their Metabolites. Antioxidants, 2021, 10, 1297.	5.1	18
3	Addition of carbon-centered radicals to aromatic antioxidants: mechanistic aspects. Physical Chemistry Chemical Physics, 2020, 22, 24572-24582.	2.8	5
4	Antioxidants and radical damage in a hydrophilic environment: chemical reactions and concepts. Essays in Biochemistry, 2020, 64, 67-74.	4.7	8
5	Fast reaction of carbon free radicals with flavonoids and other aromatic compounds. Archives of Biochemistry and Biophysics, 2019, 674, 108107.	3.0	13
6	Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydrate Polymers, 2018, 199, 141-149.	10.2	115
7	Reaction rates of glutathione and ascorbate with alkyl radicals are too slow for protection against protein peroxidation inÂvivo. Archives of Biochemistry and Biophysics, 2017, 633, 118-123.	3.0	12
8	Physiological Concentrations of Ascorbate Cannot Prevent the Potentially Damaging Reactions of Protein Radicals in Humans. Chemical Research in Toxicology, 2017, 30, 1702-1710.	3.3	11
9	Oxidative stress, free radicals and protein peroxides. Archives of Biochemistry and Biophysics, 2016, 595, 33-39.	3.0	84
10	Electrons initiate efficient formation of hydroperoxides from cysteine. Free Radical Research, 2016, 50, 987-996.	3.3	5
11	Repair of Protein Radicals by Antioxidants. Israel Journal of Chemistry, 2014, 54, 254-264.	2.3	14
12	Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress. Free Radical Biology and Medicine, 2012, 53, 1565-1573.	2.9	12
13	Intracellular GSH and ascorbate inhibit radical-induced protein chain peroxidation in HL-60 cells. Free Radical Biology and Medicine, 2012, 52, 420-426.	2.9	16
14	Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids, 2010, 39, 1131-1137.	2.7	87
15	Efficient repair of protein radicals by ascorbate. Free Radical Biology and Medicine, 2009, 46, 1049-1057.	2.9	63
16	Antioxidant properties of some different molecular weight chitosans. Carbohydrate Research, 2009, 344, 1690-1696.	2.3	134
17	Antioxidant effects of a dietary supplement: Reduction of indices of oxidative stress in normal subjects by water-soluble chitosan. Food and Chemical Toxicology, 2009, 47, 104-109.	3.6	75
18	Measurement of Lipid Hydroperoxides by the Ferric-Xylenol Orange Method (1) Characteristics of the Ferric-Xylenol Orange/Membrane Phosphatidylcholine Complex. Journal of Nutritional Science and Vitaminology, 2009, 55, 9-14.	0.6	6

#	Article	IF	CITATIONS
19	Antioxidant protection of human serum albumin by chitosan. International Journal of Biological Macromolecules, 2008, 43, 159-164.	7.5	61
20	Effect of Olmesartan on Oxidative Stress in Hemodialysis Patients. Hypertension Research, 2007, 30, 395-402.	2.7	37
21	Proteins protect lipid membranes from oxidation by thiyl radicals. Archives of Biochemistry and Biophysics, 2007, 459, 151-158.	3.0	15
22	Measurement of phosphatidylcholine hydroperoxides in solution and in intact membranes by the ferric–xylenol orange assay. Analytical Biochemistry, 2006, 359, 18-25.	2.4	19
23	Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition, 2006, 22, 266-274.	2.4	143
24	The kinetics of oxidation of GSH by protein radicals. Biochemical Journal, 2005, 392, 693-701.	3.7	72
25	Proteins are major initial cell targets of hydroxyl free radicals. International Journal of Biochemistry and Cell Biology, 2004, 36, 2334-2343.	2.8	199
26	Measurement of protein and lipid hydroperoxides in biological systems by the ferric–xylenol orange method. Analytical Biochemistry, 2003, 315, 29-35.	2.4	151
27	Effect of proteins and amino acids on oxidation of liposomes by hydroxyl and peroxyl free radicals. Redox Report, 2002, 7, 332-334.	4.5	2
28	DNA degradation and protein peroxidation in cells exposed to hydroxyl free radicals. Redox Report, 2002, 7, 329-331.	4.5	13
29	Action of peroxidases on protein hydroperoxides. Redox Report, 2002, 7, 235-242.	4.5	26
30	Perchloric Acid Enhances Sensitivity and Reproducibility of the Ferric–Xylenol Orange Peroxide Assay. Analytical Biochemistry, 2002, 304, 42-46.	2.4	150
31	Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochemical Journal, 2000, 350, 215-218.	3.7	94
32	A Critical Evaluation of the Effect of Sorbitol on the Ferric–Xylenol Orange Hydroperoxide Assay. Analytical Biochemistry, 2000, 284, 217-220.	2.4	309
33	Determination of Iron in Solutions with the Ferric–Xylenol Orange Complex. Analytical Biochemistry, 1999, 273, 143-148.	2.4	78
34	Hydroperoxide Assay with the Ferric–Xylenol Orange Complex. Analytical Biochemistry, 1999, 273, 149-155.	2.4	357
35	Crosslinking of DNA and proteins induced by protein hydroperoxides. Biochemical Journal, 1999, 338, 629-636.	3.7	111
36	The Limitations of an Iodometric Aerobic Assay for Peroxides. Analytical Biochemistry, 1996, 240, 235-241.	2.4	17

#	Article	IF	CITATIONS
37	The action of iron on amino acid and protein peroxides. Biochemical Society Transactions, 1995, 23, 249S-249S.	3.4	6
38	[29] Iodometric determination of hydroperoxides in lipids and proteins. Methods in Enzymology, 1994, 233, 289-303.	1.0	85
39	Hypothesis: A damaging role in aging for reactive protein oxidation products?. Mutation Research - DNAging, 1992, 275, 387-393.	3.2	38
40	Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochemical Pharmacology, 1992, 43, 995-1000.	4.4	92
41	The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine, 1992, 13, 341-390.	2.9	2,054
42	Hydrogen peroxide modulation of the respiratory burst of human neutrophils. Biochemical Pharmacology, 1991, 41, 31-36.	4.4	19
43	Spectrophotometric and high-performance chromatographic assays of hydroperoxides by the iodometric technique. Analytical Biochemistry, 1989, 176, 360-364.	2.4	50
44	A continuous-flow automated assay for iodometric estimation of hydroperoxides. Analytical Biochemistry, 1989, 176, 353-359.	2.4	53
45	Site-specific induction of lipid peroxidation by iron in charged micelles. Archives of Biochemistry and Biophysics, 1988, 260, 146-152.	3.0	57
46	The effects of α-tocopherol on site-specific lipid peroxidation induced by iron in charged micelles. Archives of Biochemistry and Biophysics, 1988, 260, 153-160.	3.0	39
47	Lipid peroxidation is not the cause of lysis of human erythrocytes exposed to inorganic or methylmercury. Archives of Biochemistry and Biophysics, 1987, 259, 46-51.	3.0	14
48	Radiation-induced lipid peroxidation and the fluidity of erythrocyte membrane lipids. Free Radical Biology and Medicine, 1987, 3, 147-152.	2.9	27
49	The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators. Archives of Biochemistry and Biophysics, 1986, 246, 581-588.	3.0	77
50	Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Letters, 1986, 199, 92-94.	2.8	113
51	The effect of pH on the conversion of superoxide to hydroxyl free radicals. Archives of Biochemistry and Biophysics, 1984, 234, 258-264.	3.0	119
52	Oxidation of α-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry and Biophysics, 1983, 226, 242-251.	3.0	166
53	Generation of superoxide radicals by photolysis of oxygenated ethanol solutions. Journal of the American Chemical Society, 1982, 104, 796-798.	13.7	39
54	A reaction between the superoxide free radical and lipid hydroperoxide in sodium linoleate micelles. Archives of Biochemistry and Biophysics, 1982, 214, 1-11.	3.0	57

#	Article	IF	CITATIONS
55	Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. Journal of the American Chemical Society, 1981, 103, 7020-7022.	13.7	168
56	Inhibition of peroxidation in linoleic acid membranes by nitroxide radicals, butylated hydroxytoluene, and α-tocopherol. Archives of Biochemistry and Biophysics, 1981, 210, 56-63.	3.0	36
57	A spectrophotometric method for the determination of lipid hydroperoxides. Analytical Biochemistry, 1979, 99, 249-253.	2.4	175
58	A quantitative relationship between permeability and the degree of peroxidation in ufasome membranes. Biochemical and Biophysical Research Communications, 1978, 80, 704-708.	2.1	66