Evgeny Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3170364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconfigurable Implication and Inhibition Boolean logic gates based on NAD ⁺ â€dependent enzymes: Application to signalâ€controlled biofuel cells and molecule release. Electrochemical Science Advances, 2022, 2, e2100008.	2.8	1
2	Electrochemical contributions: Christian Friedrich Schönbein (1799–1868). Electrochemical Science Advances, 2022, 2, e2160007.	2.8	0
3	Electrochemical contributions: Friedrich Wilhelm Georg Kohlrausch (1840–1910). Electrochemical Science Advances, 2022, 2, e2160008.	2.8	1
4	Circular Permutated PQQâ€Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
5	lron(<scp>iii</scp>)-cross-linked alginate hydrogels: a critical review. Materials Advances, 2022, 3, 1849-1873.	5.4	48
6	A magneto-controlled biocatalytic cascade with a fluorescent output. Organic and Biomolecular Chemistry, 2022, 20, 1869-1873.	2.8	1
7	Electrochemically produced local pH changes stimulating (bio)molecule release from pH-switchable electrode-immobilized avidin–biotin systems. Physical Chemistry Chemical Physics, 2022, 24, 6410-6414.	2.8	7
8	Highly Porous Gold Electrodes â \in ' Preparation and Characterization. ChemElectroChem, 2022, 9, .	3.4	4
9	A universal nanostructured bioanalytical platform for NAD+-dependent enzymes based on the fluorescent output reading with a smartphone. Talanta, 2022, 243, 123325.	5.5	6
10	Electrochemically switchable and tunable luciferase bioluminescence. Bioelectrochemistry, 2022, 146, 108109.	4.6	0
11	"Smart―alginate hydrogels in biosensing, bioactuation and biocomputing: State-of-the-art and perspectives. Sensors and Actuators Reports, 2022, 4, 100095.	4.4	20
12	Nanostructured Interface Loaded with Chimeric Enzymes for Fluorimetric Quantification of Cyclosporine A and FK506. Analytical Chemistry, 2022, 94, 7303-7310.	6.5	4
13	Electrochemical contributions: Julius Tafel (1862–1918). Electrochemical Science Advances, 2022, 2, .	2.8	0
14	Electrochemical contributions: Adolph Wilhelm Hermann Kolbe (1818–1884). Electrochemical Science Advances, 2022, 2, .	2.8	2
15	Electrochemical contributions: Rudolf BrdiÄka (1906–1970). Electrochemical Science Advances, 2022, 2,	2.8	0
16	Electrochemical contributions: William Nicholson (1753–1815). Electrochemical Science Advances, 2021, 1, e2160003.	2.8	2
17	Controlling Porosity of Calcium Alginate Hydrogels by Interpenetrating Polyvinyl Alcohol–Diboronate Polymer Network. ACS Applied Polymer Materials, 2021, 3, 1499-1507.	4.4	22
18	Magneto-Controlled Enzyme Activity with Locally Produced pH Changes. Journal of Physical Chemistry Letters, 2021, 12, 2523-2527.	4.6	6

#	Article	IF	CITATIONS
19	Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bioelectrochemistry, 2021, 138, 107735.	4.6	9
20	Electrochemical contributions: Sir Humphry Davy (1778–1829). Electrochemical Science Advances, 2021, 1, e2160004.	2.8	0
21	IEEE Sensors Journal's School-Age Years (2004–2011). IEEE Sensors Journal, 2021, 21, 12358-12359.	4.7	0
22	Electrochemical contributions: Jöns Jacob Berzelius (Jacob Berzelius, 1779–1848). Electrochemical Science Advances, 2021, 1, e2160005.	2.8	0
23	Electrochemical contributions: Christian Johann Dietrich (later Theodor) Grotthuss (1785â€1822). Electrochemical Science Advances, 2021, 1, e2160006.	2.8	0
24	Switchable Biocatalytic Reactions Controlled by Interfacial pH Changes Produced by Orthogonal Biocatalytic Processes. ACS Applied Materials & Interfaces, 2021, 13, 33830-33839.	8.0	14
25	Biomolecule Release from Alginate Composite Hydrogels Triggered by Logically Processed Signals. ChemPhysChem, 2021, 22, 1967-1975.	2.1	6
26	Implication and Not-Implication Boolean Logic Gates Mimicked with Enzyme Reactions — General Approach and Application to Signal-Triggered Biomolecule Release Processes. , 2021, , 149-163.		0
27	Fuel Cells and Biofuel Cells: From Past to Perspectives. Israel Journal of Chemistry, 2021, 61, 68-84.	2.3	38
28	Photo-stimulated self-powered electrochemical system for DNA release. Sensors and Actuators Reports, 2021, 3, 100058.	4.4	2
29	<i>Operando</i> Local pH Mapping of Electrochemical and Bioelectrochemical Reactions Occurring at an Electrode Surface: Effect of the Buffer Concentration. ChemElectroChem, 2021, 8, 3923-3935.	3.4	13
30	Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides. ACS Sensors, 2021, 6, 3596-3603.	7.8	8
31	"Smart―Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS Applied Bio Materials, 2021, 4, 8487-8497.	4.6	7
32	Microbial L―and D‣actate Selective Oxidoreductases as a Very Prospective but Still Uncommon Tool in Commercial Biosensors. ChemElectroChem, 2021, 8, 4725-4731.	3.4	8
33	Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nature Communications, 2021, 12, 7137.	12.8	17
34	A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. ChemPhysChem, 2020, 21, 120-128.	2.1	44
35	Magneto-controlled enzyme reactions. Methods in Enzymology, 2020, 630, 1-24.	1.0	2
36	Molecular Release Associated with Interfacial pH Change Stimulated by a Small Electrical Potential Applied. ChemElectroChem, 2020, 7, 59-63.	3.4	14

#	Article	IF	CITATIONS
37	Biomolecular Release Stimulated by Electrochemical Signals at a Very Small Potential Applied. Electroanalysis, 2020, 32, 95-103.	2.9	8
38	Boolean Logic Networks Mimicked with Chimeric Enzymes Activated/Inhibited by Several Input Signals. ChemPhysChem, 2020, 21, 589-593.	2.1	10
39	Bioelectrocatalysis at carbon nanotubes. Methods in Enzymology, 2020, 630, 215-247.	1.0	13
40	Electrochemical control of the catalytic activity of immobilized enzymes. Chemical Communications, 2020, 56, 13800-13803.	4.1	11
41	Photobiofuel Cell with Sustainable Energy Generation Based on Micro/Nanostructured Electrode Materials. ACS Applied Energy Materials, 2020, 3, 9543-9549.	5.1	9
42	Biosensors—Recent Advances and Future Challenges. Sensors, 2020, 20, 6645.	3.8	34
43	Nanocomposite hydrogel films and coatings – Features and applications. Applied Materials Today, 2020, 20, 100776.	4.3	37
44	Implication and Inhibition Boolean Logic Gates Mimicked with Enzyme Reactions. ChemPhysChem, 2020, 21, 2150-2154.	2.1	5
45	Nanozyme-Triggered DNA Release from Alginate Films. ACS Applied Bio Materials, 2020, 3, 3741-3750.	4.6	10
46	Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals. Journal of Physical Chemistry Letters, 2020, 11, 5549-5554.	4.6	14
47	Electrochemically Generated Interfacial pH Change: Application to Signalâ€Triggered Molecule Release. ChemElectroChem, 2020, 7, 3386-3403.	3.4	16
48	Boolean Logic Networks Mimicked with Chimeric Enzymes Activated/Inhibited by Several Input Signals. ChemPhysChem, 2020, 21, 578-578.	2.1	0
49	Enzyme-Based Biosensors: Tackling Electron Transfer Issues. Sensors, 2020, 20, 3517.	3.8	88
50	Control of allosteric electrochemical protein switch using magnetic signals. Chemical Communications, 2020, 56, 9206-9209.	4.1	7
51	Magnetic Nanoparticles. Magnetochemistry, 2020, 6, 6.	2.4	25
52	Electrochemical Signalâ€ŧriggered Release of Biomolecules Functionalized with Hisâ€ŧag Units. Electroanalysis, 2019, 31, 2274-2282.	2.9	7
53	Notâ€XOR (NXOR) Logic Gate Realized with Enzyme atalyzed Reactions: Optical and Electrochemical Signal Transduction. ChemPhysChem, 2019, 20, 2082-2092.	2.1	4
54	Electrochemically stimulated molecule release associated with interfacial pH changes. Chemical Communications, 2019, 55, 7856-7859.	4.1	20

#	Article	IF	CITATIONS
55	Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. Magnetochemistry, 2019, 5, 24.	2.4	24
56	8. Signal-activated biomolecular release from alginate-modified electrodes. , 2019, , 143-166.		0
57	Synthesis, Properties and Applications of Magnetic Nanoparticles and Nanowires—A Brief Introduction. Magnetochemistry, 2019, 5, 61.	2.4	82
58	DNA Release from a Modified Electrode Triggered by a Bioelectrocatalytic Process. ACS Applied Materials & Interfaces, 2019, 11, 47625-47634.	8.0	7
59	Bioelectrocatalytic Electrodes Modified with PQQâ€Glucose Dehydrogenaseâ€Calmodulin Chimera Switchable by Peptide Signals: Pathway to Generic Bioelectronic Systems Controlled by Biomolecular Inputs. ChemElectroChem, 2019, 6, 638-645.	3.4	17
60	Boolean Logic Gates Realized with Enzyme atalyzed Reactions – Unusual Look at Usual Chemical Reactions. ChemPhysChem, 2019, 20, 9-22.	2.1	47
61	Modified Electrodes and Electrochemical Systems Switchable by Light Signals. Electroanalysis, 2018, 30, 759-797.	2.9	17
62	Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. Nanoscale, 2018, 10, 1356-1365.	5.6	24
63	Biomolecular Release from Alginateâ€modified Electrode Triggered by Chemical Inputs Processed through a Biocatalytic Cascade – Integration of Biomolecular Computing and Actuation. Electroanalysis, 2018, 30, 426-435.	2.9	27
64	Nanoâ€species Release System Activated by Enzymeâ€based XOR Logic Gate. Electroanalysis, 2018, 30, 1281-1286.	2.9	11
65	Biofuel cells – Activation of micro- and macro-electronic devices. Bioelectrochemistry, 2018, 119, 33-42.	4.6	100
66	Magnetic field remotely controlled selective biocatalysis. Nature Catalysis, 2018, 1, 73-81.	34.4	84
67	Magneto ontrolled Biocatalytic Cascades with Logically Processed Input Signals – Substrate Channeling versus Free Diffusion. ChemPhysChem, 2018, 19, 3035-3043.	2.1	18
68	Enzyme-Based Logic Systems: Composition, Operation, Interfacing, and Applications. , 2018, , 265-305.		0
69	Enzymeâ€Based Logic Gates and Networks with Output Signals Analyzed by Various Methods. ChemPhysChem, 2017, 18, 1688-1713.	2.1	45
70	Electrochemically Stimulated Insulin Release from a Modified Grapheneâ€functionalized Carbon Fiber Electrode. Electroanalysis, 2017, 29, 1543-1553.	2.9	11
71	Enzyme-based logic gates and circuits—analytical applications and interfacing with electronics. Analytical and Bioanalytical Chemistry, 2017, 409, 81-94.	3.7	54
72	Molecular Logic: From Single Logic Gates to Sophisticated Logic Circuits, from Fundamental Science to Practical Applications. ChemPhysChem, 2017, 18, 1665-1666.	2.1	10

#	Article	IF	CITATIONS
73	Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips. Electroanalysis, 2017, 29, 1840-1849.	2.9	21
74	DNA Release from Fe ³⁺ ross‣inked Alginate Films Triggered by Logically Processed Biomolecular Signals: Integration of Biomolecular Computing and Actuation. ChemPhysChem, 2017, 18, 1811-1821.	2.1	37
75	A Biofuel Cell Based on Biocatalytic Reactions of Lactate on Both Anode and Cathode Electrodes – Extracting Electrical Power from Human Sweat. Electroanalysis, 2017, 29, 1602-1611.	2.9	31
76	Glucoseâ€Triggered Insulin Release from Fe ³⁺ â€Crossâ€Iinked Alginate Hydrogel: Experimental Study and Theoretical Modeling. ChemPhysChem, 2017, 18, 1541-1551.	2.1	22
77	A Biofuel Cell Based on Biocatalytic Reactions of Glucose on Both Anode and Cathode Electrodes. Electroanalysis, 2017, 29, 950-954.	2.9	25
78	An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer. Applied Materials Today, 2017, 9, 266-270.	4.3	16
79	Magnetic Field-Activated Sensing of mRNA in Living Cells. Journal of the American Chemical Society, 2017, 139, 12117-12120.	13.7	44
80	Ca ²⁺ -Switchable Glucose Dehydrogenase Associated with Electrochemical/Electronic Interfaces: Applications to Signal-Controlled Power Production and Biomolecular Release. Journal of Physical Chemistry B, 2017, 121, 11465-11471.	2.6	19
81	DNA Computing Systems Activated by Electrochemicallyâ€triggered DNA Release from a Polymerâ€brushâ€modified Electrode Array. Electroanalysis, 2017, 29, 398-408.	2.9	22
82	Utilization of a fluidic infrastructure for the realization of enzyme-based Boolean logic operations. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 139-156.	1.0	8
83	An Enzymeâ€based 1:2 Demultiplexer Interfaced with an Electrochemical Actuator. ChemPhysChem, 2017, 18, 1721-1725.	2.1	6
84	Enzyme-Based Reversible Logic Gates Operated in Flow Cells. Emergence, Complexity and Computation, 2017, , 29-59.	0.3	12
85	Electrochemicallyâ€controlled DNA Release under Physiological Conditions from a Monolayerâ€modified Electrode. Electroanalysis, 2017, 29, 324-329.	2.9	17
86	Integration of Biomolecular Sensing, Logic Processing of the Signals and Actuation. Proceedings (mdpi), 2017, 1, 710.	0.2	0
87	Experimental Realization of a Highâ€Quality Biochemical XOR Gate. ChemPhysChem, 2017, 18, 2908-2915.	2.1	10
88	Enzyme-Based Logic Systems: Composition, Operation, Interfacing, and Applications. , 2017, , 1-41.		0
89	Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications. Sensors, 2016, 16, 1042.	3.8	5
90	Electrochemically Triggered DNA Release from a Mixedâ€brush Polymerâ€modified Electrode. Electroanalysis, 2016, 28, 2613-2625.	2.9	14

Evgeny Katz

#	Article	IF	CITATIONS
91	Bioelectronic Interface Connecting Reversible Logic Gates Based on Enzyme and DNA Reactions. ChemPhysChem, 2016, 17, 2247-2255.	2.1	35
92	Controlled Logic Gates—Switch Gate and Fredkin Gate Based on Enzymeâ€Biocatalyzed Reactions Realized in Flow Cells. ChemPhysChem, 2016, 17, 1046-1053.	2.1	35
93	Diffusion of Oligonucleotides from within Ironâ€Crossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 926-926.	2.1	1
94	An Enzymeâ€Based Halfâ€Adder and Halfâ€Subtractor with a Modular Design. ChemPhysChem, 2016, 17, 2210-2217.	2.1	25
95	Magnetoâ€switchable Electrodes and Electrochemical Systems. Electroanalysis, 2016, 28, 904-919.	2.9	19
96	Modified Electrodes and Electrochemical Systems Switchable by Temperature Changes. Electroanalysis, 2016, 28, 1916-1929.	2.9	30
97	Biofuel Cell Based on Carbon Fiber Electrodes Functionalized with Graphene Nanosheets. ECS Journal of Solid State Science and Technology, 2016, 5, M3037-M3040.	1.8	23
98	DNA Release from a Bioelectronic Interface Stimulated by a DNA Signal – Amplification of DNA Signals. Electroanalysis, 2016, 28, 2692-2696.	2.9	10
99	Diffusion of Oligonucleotides from within Ironâ€Crossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 976-984.	2.1	15
100	Grapheneâ€Functionalized 3Dâ€Carbon Fiber Electrodes – Preparation and Electrochemical Characterization. Electroanalysis, 2016, 28, 1943-1946.	2.9	18
101	Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity. Scientific Reports, 2015, 5, 9415.	3.3	20
102	Switchable Bioelectrocatalysis Controlled by pH Changes. Electroanalysis, 2015, 27, 2063-2073.	2.9	27
103	Electrochemically Stimulated DNA Release from a Polymerâ€Brush Modified Electrode. Electroanalysis, 2015, 27, 2171-2179.	2.9	11
104	Switchable electrodes and biofuel cells logically controlled by chemical and biochemical signals. , 2015, , 215-238.		7
105	Implantable Biofuel Cells Operating In Vivo—Potential Power Sources for Bioelectronic Devices. Bioelectronic Medicine, 2015, 2, 1-12.	2.3	42
106	Can bio-inspired information processing steps be realized as synthetic biochemical processes?. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 219-228.	1.8	11
107	Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. Chemical Communications, 2015, 51, 3493-3500.	4.1	60
108	Biocomputing — tools, aims, perspectives. Current Opinion in Biotechnology, 2015, 34, 202-208.	6.6	85

#	Article	IF	CITATIONS
109	A bioelectronic system for insulin release triggered by ketone body mimicking diabetic ketoacidosis in vitro. Chemical Communications, 2015, 51, 7618-7621.	4.1	21
110	Substance Release Triggered by Biomolecular Signals in Bioelectronic Systems. Journal of Physical Chemistry Letters, 2015, 6, 1340-1347.	4.6	74
111	Reversible Logic Gates Based on Enzymeâ€Biocatalyzed Reactions and Realized in Flow Cells: A Modular Approach. ChemPhysChem, 2015, 16, 1405-1415.	2.1	49
112	Biomolecular Computing Realized in Parallel Flow Systems: Enzyme-Based Double Feynman Logic Gate. Parallel Processing Letters, 2015, 25, 1540001.	0.6	11
113	Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angewandte Chemie - International Edition, 2015, 54, 6562-6566.	13.8	106
114	Implantable biofuel cells operating in vivo: Providing sustainable power for bioelectronic devices: From biofuel cells to cyborgs. , 2015, , .		11
115	Wireless Information Transmission System Powered by an Abiotic Biofuel Cell Implanted in an Orange. Electroanalysis, 2015, 27, 276-280.	2.9	20
116	A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry, 2015, 106, 28-33.	4.6	82
117	Pacemaker Activated by an Abiotic Biofuel Cell Operated in Human Serum Solution. Electroanalysis, 2014, 26, 2445-2457.	2.9	53
118	Biocomputing, Biosensing and Bioactuation Based on Enzyme Biocatalyzed Reactions. Biocatalysis, 2014, 1, .	2.3	8
119	Biochemical flip-flop memory systems: essential additions to autonomous biocomputing and biosensing systems. International Journal of General Systems, 2014, 43, 722-739.	2.5	9
120	Starchâ€Powered Biofuel Cell Activated by Logically Processed Biomolecular Signals. ChemElectroChem, 2014, 1, 1822-1827.	3.4	16
121	A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks. Analyst, The, 2014, 139, 982.	3.5	52
122	Enzymatic filter for improved separation of output signals in enzyme logic systems towards â€~sense and treat' medicine. Biomaterials Science, 2014, 2, 184-191.	5.4	32
123	Majority and Minority Gates Realized in Enzyme-Biocatalyzed Systems Integrated with Logic Networks and Interfaced with Bioelectronic Systems. Journal of Physical Chemistry B, 2014, 118, 6775-6784.	2.6	49
124	Kinetic Model for a Threshold Filter in an Enzymatic System for Bioanalytical and Biocomputing Applications. Journal of Physical Chemistry B, 2014, 118, 12435-12443.	2.6	24
125	Activation of a Biocatalytic Electrode by Removing Glucose Oxidase from the Surface—Application to Signal Triggered Drug Release. ACS Applied Materials & Interfaces, 2014, 6, 13349-13354.	8.0	37
126	A biocatalytic cascade with several output signals—towards biosensors with different levels of confidence. Analytical and Bioanalytical Chemistry, 2014, 406, 3365-3370.	3.7	22

#	Article	IF	CITATIONS
127	Model system for targeted drug release triggered by immune-specific signals. Analytical and Bioanalytical Chemistry, 2014, 406, 4825-4829.	3.7	22
128	Self-powered electrochemical memristor based on a biofuel cell – towards memristors integrated with biocomputing systems. Chemical Communications, 2014, 50, 4816.	4.1	37
129	Enzyme-based logic gates switchable between OR, NXOR and NAND Boolean operations realized in a flow system. Chemical Communications, 2014, 50, 12043-12046.	4.1	22
130	An enzyme-based reversible CNOT logic gate realized in a flow system. Analyst, The, 2014, 139, 1839.	3.5	45
131	Antibacterial Drug Release Electrochemically Stimulated by the Presence of Bacterial Cells – Theranostic Approach. Electroanalysis, 2014, 26, 2552-2557.	2.9	29
132	A bioinspired associative memory system based on enzymatic cascades. Chemical Communications, 2013, 49, 6962.	4.1	30
133	Implanted biofuel cells operating in vivo – methods, applications and perspectives – feature article. Energy and Environmental Science, 2013, 6, 2791.	30.8	197
134	Networked Enzymatic Logic Gates with Filtering: New Theoretical Modeling Expressions and Their Experimental Application. Journal of Physical Chemistry B, 2013, 117, 14928-14939.	2.6	45
135	Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups. Analyst, The, 2013, 138, 6251.	3.5	28
136	Biomolecular release triggered by glucose input – bioelectronic coupling of sensing and actuating systems. Chemical Communications, 2013, 49, 4755.	4.1	34
137	Engineering Luminescent Molecules with Sensing and Logic Capabilities. , 2013, , 79-98.		6
138	Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications. Analytical and Bioanalytical Chemistry, 2013, 405, 3659-3672.	3.7	61
139	A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system – battery not included. Physical Chemistry Chemical Physics, 2013, 15, 6278.	2.8	142
140	Biofuel Cell Operating in Vivo in Rat. Electroanalysis, 2013, 25, 1579-1584.	2.9	125
141	From "cyborg―lobsters to a pacemaker powered by implantable biofuel cells. Energy and Environmental Science, 2013, 6, 81-86.	30.8	283
142	Enzymatic AND Logic Gate with Sigmoid Response Induced by Photochemically Controlled Oxidation of the Output. Journal of Physical Chemistry B, 2013, 117, 7559-7568.	2.6	46
143	Modularity of Biochemical Filtering for Inducing Sigmoid Response in Both Inputs in an Enzymatic AND Gate. Journal of Physical Chemistry B, 2013, 117, 9857-9865.	2.6	39
144	Biomolecular AND Logic Gate Based on Immobilized Enzymes with Precise Spatial Separation Controlled by Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2013, 117, 16058-16065.	2.6	15

#	Article	IF	CITATIONS
145	Living battery – biofuel cells operating in vivo in clams. Energy and Environmental Science, 2012, 5, 8891.	30.8	225
146	Electronic interfaces switchable by logically processed multiple biochemical and physiological signals. Journal of Materials Chemistry, 2012, 22, 8171.	6.7	57
147	Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations. Journal of Materials Chemistry, 2012, 22, 19523.	6.7	63
148	Analysis of biomarkers characteristic of porcine liver injury—from biomolecular logic gates to an animal model. Analyst, The, 2012, 137, 1768.	3.5	52
149	Enzyme-Based Logic Analysis of Biomarkers at Physiological Concentrations: AND Gate with Double-Sigmoid "Filter―Response. Journal of Physical Chemistry B, 2012, 116, 4457-4464.	2.6	48
150	Multianalyte Digital Enzyme Biosensors with Built-in Boolean Logic. Analytical Chemistry, 2012, 84, 5463-5469.	6.5	102
151	Enzyme-Based Logic: OR Gate with Double-Sigmoid Filter Response. Journal of Physical Chemistry B, 2012, 116, 9683-9689.	2.6	53
152	A biochemical logic approach to biomarker-activated drug release. Journal of Materials Chemistry, 2012, 22, 19709.	6.7	46
153	Electrochemically Controlled Drug-Mimicking Protein Release from Iron-Alginate Thin-Films Associated with an Electrode. ACS Applied Materials & Interfaces, 2012, 4, 466-475.	8.0	124
154	Biocatalytic Enzyme Networks Designed for Binary-Logic Control of Smart Electroactive Nanobiointerfaces. Topics in Catalysis, 2012, 55, 1201-1216.	2.8	13
155	Molecular AND logic gate based on bacterial anaerobic respiration. Chemical Communications, 2012, 48, 10174.	4.1	36
156	Permeability of Human Tooth Surfaces Studied In Vitro by Electrochemical Impedance Spectroscopy. Electroanalysis, 2012, 24, 1033-1038.	2.9	2
157	A Selfâ€Powered "Senseâ€Actâ€Treat―System that is Based on a Biofuel Cell and Controlled by Boolean Logic. Angewandte Chemie - International Edition, 2012, 51, 2686-2689.	13.8	139
158	Implanted Biofuel Cell Operating in a Living Snail. Journal of the American Chemical Society, 2012, 134, 5040-5043.	13.7	437
159	Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate. Journal of Physical Chemistry B, 2011, 115, 9838-9845.	2.6	34
160	High-fidelity determination of security threats via a Boolean biocatalytic cascade. Chemical Communications, 2011, 47, 3087.	4.1	46
161	Towards biochemical filters with a sigmoidal response to pH changes: buffered biocatalytic signal transduction. Physical Chemistry Chemical Physics, 2011, 13, 4507.	2.8	36
162	Biomolecular Filters for Improved Separation of Output Signals in Enzyme Logic Systems Applied to Biomedical Analysis. Analytical Chemistry, 2011, 83, 8383-8386.	6.5	47

#	Article	IF	CITATIONS
163	Enzyme-based NAND gate for rapid electrochemical screening of traumatic brain injury in serum. Analytica Chimica Acta, 2011, 703, 94-100.	5.4	25
164	Bio-logic analysis of injury biomarker patterns in human serum samples. Talanta, 2011, 83, 955-959.	5.5	59
165	Responsive Interface Switchable by Logically Processed Physiological Signals: Toward "Smart― Actuators for Signal Amplification and Drug Delivery. ACS Applied Materials & Interfaces, 2011, 3, 1620-1623.	8.0	87
166	Materials with Built-in Logic. Journal of Computational and Theoretical Nanoscience, 2011, 8, 356-364.	0.4	30
167	Bioelectronic Devices Controlled by Biocomputing Systems. Israel Journal of Chemistry, 2011, 51, 132-140.	2.3	13
168	Digital Biosensors with Builtâ€in Logic for Biomedical Applications. Israel Journal of Chemistry, 2011, 51, 141-150.	2.3	69
169	Processing electrochemical signals at both sides of interface: electronic vs. chemical signal processing. Journal of Solid State Electrochemistry, 2011, 15, 1471-1480.	2.5	4
170	Bicomponent Microneedle Array Biosensor for Minimallyâ€Invasive Glutamate Monitoring. Electroanalysis, 2011, 23, 2302-2309.	2.9	99
171	Bioelectronic system for the control and readout of enzyme logic gates. Sensors and Actuators B: Chemical, 2011, 155, 206-213.	7.8	19
172	Editorial Tenth Anniversary Issue. IEEE Sensors Journal, 2011, 11, 3053-3054.	4.7	0
173	Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Analytical and Bioanalytical Chemistry, 2010, 398, 1591-1603.	3.7	158
174	Modified Electrodes with Switchable Selectivity for Cationic and Anionic Redox Species. Electroanalysis, 2010, 22, 35-40.	2.9	57
175	Biofuel Cells with Switchable Power Output. Electroanalysis, 2010, 22, 744-756.	2.9	53
176	Electrochemical Nanotransistor from Mixedâ€₽olymer Brushes. Advanced Materials, 2010, 22, 1863-1866.	21.0	45
177	Artificial Muscle Reversibly Controlled by Enzyme Reactions. Journal of Physical Chemistry Letters, 2010, 1, 839-843.	4.6	38
178	Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Signal Change. Journal of Physical Chemistry B, 2010, 114, 13601-13608.	2.6	52
179	Keypad Lock Security System Based on Immune-Affinity Recognition Integrated with a Switchable Biofuel Cell. Journal of Physical Chemistry Letters, 2010, 1, 973-977.	4.6	69
180	Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic. Journal of Physical Chemistry B, 2010, 114, 14103-14109.	2.6	46

Evgeny Katz

#	Article	IF	CITATIONS
181	Reversible "Closing―of an Electrode Interface Functionalized with a Polymer Brush by an Electrochemical Signal. Langmuir, 2010, 26, 4506-4513.	3.5	84
182	Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers. Molecular BioSystems, 2010, 6, 2554.	2.9	80
183	Enzyme logic gate associated with a single responsive microparticle: scaling biocomputing to microsize systems. Chemical Communications, 2010, 46, 94-96.	4.1	21
184	Enzyme-Based Multiplexer and Demultiplexer. Journal of Physical Chemistry B, 2010, 114, 5222-5226.	2.6	28
185	Enzymatic AND Logic Gates Operated Under Conditions Characteristic of Biomedical Applications. Journal of Physical Chemistry B, 2010, 114, 12166-12174.	2.6	55
186	Enzyme-based logic systems for information processing. Chemical Society Reviews, 2010, 39, 1835.	38.1	489
187	Multiplexing of injury codes for the parallel operation of enzyme logic gates. Analyst, The, 2010, 135, 2249.	3.5	96
188	Self-powered biomolecular keypad lock security system based on a biofuel cell. Chemical Communications, 2010, 46, 2405.	4.1	57
189	Reversible gating controlled by enzymes at nanostructured interface. Chemical Communications, 2010, 46, 2088.	4.1	40
190	Biofuel Cells Controlled by Logically Processed Biochemical Signals: Towards Physiologically Regulated Bioelectronic Devices. Chemistry - A European Journal, 2009, 15, 12554-12564.	3.3	97
191	Switchable Electrodes: How Can the System Complexity be Scaled up?. Electroanalysis, 2009, 21, 252-260.	2.9	56
192	Enzyme logic network analyzing combinations of biochemical inputs and producing fluorescent output signals: Towards multi-signal digital biosensors. Sensors and Actuators B: Chemical, 2009, 140, 1-4.	7.8	18
193	Switchable electrode controlled by Boolean logic gates using enzymes as input signals. Bioelectrochemistry, 2009, 77, 69-73.	4.6	46
194	Enzyme logic gates for the digital analysis of physiological level upon injury. Biosensors and Bioelectronics, 2009, 24, 3569-3574.	10.1	81
195	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-462.	3.6	52
196	An Integrated Multifunctional Nanosystem from Command Nanoparticles and Enzymes. Small, 2009, 5, 817-820.	10.0	63
197	Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices. Procedia Chemistry, 2009, 1, 682-685.	0.7	11
198	Biofuel cell controlled by enzyme logic network — Approaching physiologically regulated devices. Bioelectrochemistry, 2009, 76, 4-9.	4.6	64

#	ARTICLE	IF	CITATIONS
199	Enzymatic AND-gate based on electrode-immobilized glucose-6-phosphate dehydrogenase: Towards digital biosensors and biochemical logic systems with low noise. Biosensors and Bioelectronics, 2009, 25, 695-701.	10.1	52
200	Network Analysis of Biochemical Logic for Noise Reduction and Stability: A System of Three Coupled Enzymatic AND Gates. Journal of Physical Chemistry B, 2009, 113, 5301-5310.	2.6	105
201	Analog Noise Reduction in Enzymatic Logic Gates. Journal of Physical Chemistry B, 2009, 113, 10472-10479.	2.6	49
202	Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability. , 2009, , .		3
203	Logic Networks Based on Immunorecognition Processes. Journal of Physical Chemistry B, 2009, 113, 12154-12159.	2.6	40
204	Switchable Electrode Controlled by Enzyme Logic Network System: Approaching Physiologically Regulated Bioelectronics. Journal of the American Chemical Society, 2009, 131, 1314-1321.	13.7	154
205	Biofuel Cell Controlled by Enzyme Logic Systems. Journal of the American Chemical Society, 2009, 131, 826-832.	13.7	161
206	Coupling of Biocomputing Systems with Electronic Chips: Electronic Interface for Transduction of Biochemical Information. Journal of Physical Chemistry C, 2009, 113, 2573-2579.	3.1	55
207	Stimuli-Responsive Hydrogel Membranes Coupled with Biocatalytic Processes. ACS Applied Materials & Interfaces, 2009, 1, 532-536.	8.0	156
208	Enzyme-Based NAND and NOR Logic Gates with Modular Design. Journal of Physical Chemistry B, 2009, 113, 16065-16070.	2.6	95
209	Bioelectrocatalytic System Coupled with Enzyme-Based Biocomputing Ensembles Performing Boolean Logic Operations: Approaching "Smart―Physiologically Controlled Biointerfaces. ACS Applied Materials & Interfaces, 2009, 1, 144-149.	8.0	79
210	Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching â€~smart' drug delivery systems. Nanotechnology, 2009, 20, 434006.	2.6	88
211	From the Incoming Editor-in-Chief. IEEE Sensors Journal, 2009, 9, 882-882.	4.7	0
212	Boolean Logic Gates that Use Enzymes as Input Signals. ChemBioChem, 2008, 9, 1260-1266.	2.6	102
213	Logic Gates Based on Magnetic Nanoparticles Functionalized with a Bioelectrocatalytic System. Electroanalysis, 2008, 20, 22-29.	2.9	18
214	Fieldâ€Effect Nanoparticleâ€Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species. Electroanalysis, 2008, 20, 1748-1753.	2.9	55
215	Optimization of Enzymatic Biochemical Logic for Noise Reduction and Scalability: How Many Biocomputing Gates Can Be Interconnected in a Circuit?. Journal of Physical Chemistry B, 2008, 112, 11777-11784.	2.6	107
216	High sensitivity molecular detection with enzyme-linked immuno-sorbent assay (ELISA)-type immunosensing. Nanotechnology, 2008, 19, 375502.	2.6	21

#	Article	IF	CITATIONS
217	Biochemically Controlled Bioelectrocatalytic Interface. Journal of the American Chemical Society, 2008, 130, 10888-10889.	13.7	96
218	Magneto-Induced Self-Assembling of Conductive Nanowires for Biosensor Applications. Journal of Physical Chemistry C, 2008, 112, 7337-7344.	3.1	60
219	Chemical Gating with Nanostructured Responsive Polymer Brushes: Mixed Brush <i>versus</i> Homopolymer Brush. ACS Nano, 2008, 2, 41-52.	14.6	172
220	Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems. ACS Nano, 2008, 2, 2160-2166.	14.6	64
221	"Chemical Transformers―from Nanoparticle Ensembles Operated with Logic. Nano Letters, 2008, 8, 2993-2997.	9.1	131
222	Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications. Journal of Physical Chemistry C, 2008, 112, 8438-8445.	3.1	164
223	Multiple Logic Gates Based on Electrically Wired Surface-Reconstituted Enzymes. Journal of the American Chemical Society, 2008, 130, 36-37.	13.7	98
224	Biocomputing Security System:  Concatenated Enzyme-Based Logic Gates Operating as a Biomolecular Keypad Lock. Journal of the American Chemical Society, 2008, 130, 4234-4235.	13.7	224
225	Biosensor Techniques Used for Determination of Telomerase Activity in Cancer Cells. Sensors, 2008, 8, 347-369.	3.8	13
226	Bionanotransporters. ACS Symposium Series, 2008, , 375-393.	0.5	0
227	Biosensors based on immobilized insects fragments. Journal of Solid State Electrochemistry, 2007, 12, 7-14.	2.5	3