
Peter P Purslow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3170358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Science, 2014, 98, 520-532.	5.5	452
2	Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 191-197.	4.0	434
3	The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. Meat Science, 2001, 58, 17-23.	5.5	337
4	Intramuscular connective tissue and its role in meat quality. Meat Science, 2005, 70, 435-447.	5.5	324
5	Relationship between Meat Structure, Water Mobility, and Distribution:Â A Low-Field Nuclear Magnetic Resonance Study. Journal of Agricultural and Food Chemistry, 2002, 50, 824-829.	5.2	238
6	Strain-induced reorientation of an intramuscular connective tissue network: Implications for passive muscle elasticity. Journal of Biomechanics, 1989, 22, 21-31.	2.1	219
7	Age related compliance of the lamina cribrosa in human eyes. British Journal of Ophthalmology, 2000, 84, 318-323.	3.9	212
8	Functional morphology of the endomysium in series fibered muscles. Journal of Morphology, 1992, 212, 109-122.	1.2	192
9	The structure and functional significance of variations in the connective tissue within muscle. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 947-966.	1.8	192
10	The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue. Meat Science, 2000, 55, 301-307.	5.5	187
11	Physiological and structural events post mortem of importance for drip loss in pork. Meat Science, 2002, 61, 355-366.	5.5	176
12	Muscle fascia and force transmission. Journal of Bodywork and Movement Therapies, 2010, 14, 411-417.	1.2	158
13	Differentiation of Myoblasts in Serum-Free Media: Effects of Modified Media Are Cell Line-Specific. Cells Tissues Organs, 2000, 167, 130-137.	2.3	132
14	Dietary-induced changes of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality1. Journal of Animal Science, 2002, 80, 2862-2871.	0.5	129
15	The physical basis of meat texture: Observations on the fracture behaviour of cooked bovine M. Semitendinosus. Meat Science, 1985, 12, 39-60.	5.5	109
16	Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Science, 2018, 144, 127-134.	5.5	105
17	Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 44-63.	11.7	101
18	New Developments on the Role of Intramuscular Connective Tissue in Meat Toughness. Annual Review of Food Science and Technology, 2014, 5, 133-153.	9.9	100

#	Article	IF	CITATIONS
19	The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Frontiers in Physiology, 2020, 11, 495.	2.8	99
20	Positional variations in fracture toughness, stiffness and strength of descending thoracic pig aorta. Journal of Biomechanics, 1983, 16, 947-953.	2.1	96
21	NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends in Food Science and Technology, 2002, 13, 341-346.	15.1	93
22	Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. American Journal of Clinical Nutrition, 2003, 77, 173-179.	4.7	91
23	Ageing Changes in the Tensile Properties of Tendons: Influence of Collagen Fibril Volume Fraction. Journal of Biomechanical Engineering, 2008, 130, 021011.	1.3	89
24	The strength and stiffness of perimysial connective tissue isolated from cooked beef muscle. Meat Science, 1989, 26, 255-269.	5.5	86
25	Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Science, 2021, 172, 108311.	5.5	83
26	Compensatory growth response in pigs, muscle protein turn-over and meat texture: effects of restriction/realimentation period. Animal Science, 2002, 75, 367-377.	1.3	81
27	Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture. Journal of Applied Physiology, 2012, 113, 878-888.	2.5	79
28	Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Science, 2022, 185, 108657.	5.5	71
29	Insights on meat quality from combining traditional studies and proteomics. Meat Science, 2021, 174, 108423.	5.5	69
30	Calcium Determines the Supramolecular Organization of Fibrillin-rich Microfibrils. Journal of Cell Biology, 1998, 141, 829-837.	5.2	68
31	Proteomic biomarkers of beef colour. Trends in Food Science and Technology, 2020, 101, 234-252.	15.1	61
32	The effect of processing temperature and addition of mono- and di-valent salts on the heme- nonheme-iron ratio in meat. Food Chemistry, 2001, 73, 433-439.	8.2	60
33	Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International, 2011, 44, 582-588.	6.2	58
34	Immunolocalisation of intermediate filament proteins in porcine meat. Fibre type and muscle-specific variations during conditioning. Meat Science, 1998, 50, 91-104.	5.5	55
35	Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Science, 2004, 68, 447-456.	5.5	55
36	Disparity of dietary effects on collagen characteristics and toughness between two beef muscles. Meat Science, 2010, 86, 491-497.	5.5	55

#	Article	IF	CITATIONS
37	Biomechanical and biochemical study of a standardized wound healing model. International Journal of Biochemistry and Cell Biology, 1997, 29, 211-220.	2.8	49
38	Reliability of temperament tests on finishing pigs in group-housing and comparison to social tests. Applied Animal Behaviour Science, 2009, 118, 28-35.	1.9	48
39	Effect of muscle type on the rate of post-mortem proteolysis in pigs. Meat Science, 2004, 66, 595-601.	5.5	47
40	MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Manipulating meat tenderness by increasing the turnover of intramuscular connective tissue1,2. Journal of Animal Science, 2012, 90, 950-959.	0.5	44
41	The effect of conditioning on the strength of perimysial connective tissue dissected from cooked meat. Meat Science, 1991, 30, 1-12.	5.5	42
42	Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Science, 2021, 181, 108611.	5.5	40
43	Fracture toughness of frozen meat. Meat Science, 1987, 21, 25-49.	5.5	38
44	Ocular Elasticity. Ophthalmology, 1996, 103, 1686-1692.	5.2	37
45	Collagen fibre reorientation around a crack in biaxially stretched aortic media. International Journal of Biological Macromolecules, 1984, 6, 21-25.	7.5	34
46	The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review. Meat Science, 2016, 119, 138-146.	5.5	34
47	Structural and mechanical changes in raw and cooked single porcine muscle fibres extended to fracture. Meat Science, 1995, 40, 217-234.	5.5	33
48	Connective tissue differences in the strength of cooked meat across the muscle fibre direction due to test specimen size. Meat Science, 1990, 28, 183-194.	5.5	30
49	X-Ray Diffraction Studies of Fibrillin-Rich Microfibrils: Effects of Tissue Extension on Axial and Lateral Packing. Journal of Structural Biology, 1998, 122, 123-127.	2.8	30
50	Role of Ca2+ for the mechanical properties of fibrillin. Proteins: Structure, Function and Bioinformatics, 2001, 45, 90-95.	2.6	30
51	Mechanical behaviour of aortic tissue as a function of collagen orientation. Die Makromolekulare Chemie, 1980, 181, 1999-2007.	1.1	28
52	Specific effects on strength and heat stability of intramuscular connective tissue during long time low temperature cooking. Meat Science, 2019, 153, 109-116.	5.5	27
53	Changes in collagen properties and cathepsin activity of beef M. semitendinosus by the application of ultrasound during post-mortem aging. Meat Science, 2022, 185, 108718.	5.5	26
54	Vitamins E and C May Increase Collagen Turnover by Intramuscular Fibroblasts. Potential for Improved Meat Quality. Journal of Agricultural and Food Chemistry, 2011, 59, 608-614.	5.2	25

#	Article	IF	CITATIONS
55	EFFECT OF POSTRIGOR SARCOMERE LENGTH ON MECHANICAL AND STRUCTURAL CHARACTERISTICS OF RAW AND HEAT-DENATURED SINGLE PORCINE MUSCLE FIBRES. Journal of Texture Studies, 1996, 27, 217-233.	2.5	23
56	Phenotypic differences in matrix metalloproteinase 2 activity between fibroblasts from 3 bovine muscles1. Journal of Animal Science, 2010, 88, 4006-4015.	0.5	22
57	Influence of Temperature, Fibre Diameter and Conditioning on the Mechanical Properties of Single Muscle Fibres Extended to Fracture. Journal of the Science of Food and Agriculture, 1996, 72, 359-366.	3.5	21
58	The Effects of Collagen Type I Topography on Myoblasts In Vitro. Connective Tissue Research, 2004, 45, 238-247.	2.3	21
59	THE EFFECT OF MARINATION AND COOKING ON THE MECHANICAL PROPERTIES OF INTRAMUSCULAR CONNECTIVE TISSUE. Journal of Muscle Foods, 1991, 2, 177-195.	0.5	20
60	Increasing the Cooking Temperature of Meat Does Not Affect Nonheme Iron Absorption from a Phytate-Rich Meal in Women. Journal of Nutrition, 2003, 133, 94-97.	2.9	20
61	The activities of MMPâ€9 and total gelatinase respond differently to substrate coating and cyclic mechanical stretching in fibroblasts and myoblasts. Cell Biology International, 2010, 34, 587-591.	3.0	20
62	Meat Tenderness: Underlying Mechanisms, Instrumental Measurement, and Sensory Assessment. Meat and Muscle Biology, 2020, 4, .	1.9	20
63	Variations in the tensile adhesive strength of meat-myosin junctions due to test configurations. Meat Science, 1987, 19, 227-242.	5.5	19
64	Fracture of non-linear biological materials: some observations from practice relevant to recent theory. Journal Physics D: Applied Physics, 1989, 22, 854-856.	2.8	18
65	Mechanical and structural characteristics of single muscle fibres and fibre groups from raw and cooked pork longissimus muscle. Meat Science, 1997, 46, 285-301.	5.5	18
66	The thermal shrinkage force in perimysium from different beef muscles is not affected by post-mortem ageing. Meat Science, 2018, 135, 109-114.	5.5	18
67	Development of components of the extracellular matrix, basal lamina and sarcomere in chick quadriceps and pectoralis muscles. British Poultry Science, 2001, 42, 315-320.	1.7	17
68	Effect of added μ-calpain and post-mortem storage on the mechanical properties of bovine single muscle fibres extended to fracture. Meat Science, 2004, 66, 105-112.	5.5	17
69	Location of and post-mortem changes in some cytoskeletal proteins in pork and cod muscle. , 2000, 80, 691-697.		16
70	Modelling quality variations in commercial Ontario pork production. Meat Science, 2008, 80, 123-131.	5.5	16
71	New recommendations for measuring collagen solubility. Meat Science, 2016, 118, 78-81.	5.5	16
72	The influence of varying degrees of adhesion as determined by mechanical tests on the sensory and consumer acceptance of a meat product. Meat Science, 1990, 28, 141-158.	5.5	13

#	Article	IF	CITATIONS
73	Fibrillin-rich microfibrils: an X-ray diffraction study of the fundamental axial periodicity. FEBS Letters, 1997, 413, 424-428.	2.8	13
74	Differences in the energetics of collagen denaturation in connective tissue from two muscles. International Journal of Biological Macromolecules, 2018, 113, 1294-1301.	7.5	13
75	Structure and Function of Intramuscular Connective Tissue. , 1990, , 127-166.		13
76	Effect of proteolytic enzyme activity and heating on the mechanical properties of bovine single muscle fibres. Meat Science, 2004, 66, 361-369.	5.5	12
77	The Extracellular Matrix of Skeletal and Cardiac Muscle. , 2008, , 325-357.		12
78	Effect of nutritional regimen including limit feeding and breed on growth performance, carcass characteristics and meat quality in beef cattle. Canadian Journal of Animal Science, 2012, 92, 327-341.	1.5	12
79	Matrix metalloproteinases are less essential for the in-situ gelatinolytic activity in heart muscle than in skeletal muscle. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 156, 518-522.	1.8	11
80	Dimensional changes of isolated endomysia on heating. Meat Science, 1988, 24, 261-273.	5.5	9
81	The Structure and Growth ofÂMuscle. , 2017, , 49-97.		6
82	Age-related dataset on the mechanical properties and collagen fibril structure of tendons from a murine model. Scientific Data, 2018, 5, 180140.	5.3	6
83	The shear modulus of connections between tendon fascicles. , 2009, , .		5
84	Expressions of matrix metalloproteinases and their inhibitor are modified by beta-adrenergic agonist Ractopamine in skeletal fibroblasts and myoblasts. Canadian Journal of Animal Science, 2012, 92, 159-166.	1.5	5
85	Parasitic zoonoses present some risks with low-temperature cooking of pork. Meat Science, 2016, 119, 14-15.	5.5	5
86	Structural organization of collagen in Metridium senile. International Journal of Biological Macromolecules, 1985, 7, 19-24.	7.5	4
87	A comparison between tensile and shear adhesive strength of meat-myosin junctions. Meat Science, 1987, 21, 145-156.	5.5	4
88	Epinephrineâ€induced MMP expression is different between skeletal fibroblasts and myoblasts. Cell Biochemistry and Function, 2011, 29, 603-609.	2.9	4
89	General anatomy of the muscle fasciae. , 2012, , 5-10.		4
90	The use of soy protein polymers as a release device for nematophagous fungi in the control of parasitic nematodes in ruminants. Journal of Helminthology, 2014, 88, 511-514.	1.0	4

#	Article	IF	CITATIONS
91	Epinephrine upregulates calpain activity in cultured C2C12 muscle cells. Biochimie, 2000, 82, 197-201.	2.6	3
92	Single-nucleotide polymorphisms for matrix metalloprotease-1 can affect perimysial strength and intramuscular fat content but not growth rate of cattle. Animal Production Science, 2020, 60, 1869.	1.3	3
93	Age-related compliance of the lamina cribrosa in human eyes. Journal of Biomechanics, 1994, 27, 823.	2.1	1
94	Shared Graduate Student Education by International Networking. Journal of Food Science, 2006, 69, CRH100-CRH101.	3.1	1
95	Poisson's ratios in anisotropic materials at finite strains; comment on short communication by Smith et al. (2011). Journal of Biomechanics, 2012, 45, 1858-1859.	2.1	1
96	Changes in the collagen fibre orientation and stiffness of the connective tissues surrounding individual muscle fibres with muscle length. Journal of Biomechanics, 1994, 27, 646.	2.1	0
97	Meat Structure and Quality. Proceedings of the British Society of Animal Science, 2001, 2001, 247-249.	0.0	0
98	Producción, manejo, valoración, consumo y atributos de calidad de carne vacuna argentina: estudio mediante encuestas a carniceros. Ciencia Tecnologia Agropecuaria, 2021, 22, .	0.3	0