
Konstantin S Rodygin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3170038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology. Chemistry - an Asian Journal, 2016, 11, 965-976.	1.7	126
2	Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules, 2018, 23, 2442.	1.7	109
3	Calciumâ€Based Sustainable Chemical Technologies for Total Carbon Recycling. ChemSusChem, 2019, 12, 1483-1516.	3.6	83
4	An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source. Green Chemistry, 2016, 18, 482-486.	4.6	72
5	[3 + 2]-Cycloaddition of <i>in Situ</i> Generated Nitrile Imines and Acetylene for Assembling of 1,3-Disubstituted Pyrazoles with Quantitative Deuterium Labeling. Journal of Organic Chemistry, 2018, 83, 3819-3828.	1.7	72
6	A solid acetylene reagent with enhanced reactivity: fluoride-mediated functionalization of alcohols and phenols. Green Chemistry, 2017, 19, 3032-3041.	4.6	56
7	Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability. European Journal of Organic Chemistry, 2021, 2021, 43-52.	1.2	48
8	Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation. Organic Chemistry Frontiers, 2018, 5, 226-231.	2.3	44
9	Vinylation of a Secondary Amine Core with Calcium Carbide for Efficient Post-Modification and Access to Polymeric Materials. Molecules, 2018, 23, 648.	1.7	32
10	Recent advances in applications of vinyl ether monomers for precise synthesis of custom-tailored polymers. European Polymer Journal, 2020, 136, 109872.	2.6	32
11	Efficient labeling of organic molecules using ¹³ C elemental carbon: universal access to ¹³ C ₂ -labeled synthetic building blocks, polymers and pharmaceuticals. Organic Chemistry Frontiers, 2020, 7, 638-647.	2.3	30
12	A Green and Sustainable Route to Carbohydrate Vinyl Ethers for Accessing Bioinspired Materials with a Unique Microspherical Morphology. ChemSusChem, 2018, 11, 292-298.	3.6	29
13	Direct Synthesis of Deuterium-Labeled O-, S-, N-Vinyl Derivatives from Calcium Carbide. Synthesis, 2019, 51, 3001-3013.	1.2	26
14	Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Organic Chemistry Frontiers, 2020, 7, 1334-1342.	2.3	26
15	Calcium carbide as a convenient acetylene source in the synthesis of unsaturated sulfides, promising functionalized monomers. Mendeleev Communications, 2015, 25, 415-416.	0.6	24
16	Synthesis of vinyl thioethers and bis-thioethenes from calcium carbide and disulfides. Mendeleev Communications, 2017, 27, 476-478.	0.6	24
17	Calcium Carbide Looping System for Acetaldehyde Manufacturing from Virtually any Carbon Source. ChemSusChem, 2020, 13, 3679-3685.	3.6	24
18	Biomass- and calcium carbide-based recyclable polymers. Green Chemistry, 2021, 23, 2487-2495.	4.6	20

Konstantin S Rodygin

#	Article	IF	CITATIONS
19	Generation, regeneration, and recovery of Cu catalytic system by changing the polarity of electrodes. Green Chemistry, 2022, 24, 1132-1140.	4.6	15
20	Metal-catalyzed chemical activation of calcium carbide: New way to hierarchical metal/alloy-on-carbon catalysts. Journal of Catalysis, 2022, 407, 281-289.	3.1	15
21	Synthesis of new fluorine-containing pyrazolo[3,4-b]pyridinones as promising drug precursors. Russian Chemical Bulletin, 2011, 60, 733-745.	0.4	14
22	Oxidation of polyfunctional sulfides with chlorine dioxide. Russian Journal of Organic Chemistry, 2011, 47, 124-130.	0.3	13
23	Acetylene and Ethylene: Universal C2 Molecular Units in Cycloaddition Reactions. Synthesis, 2022, 54, 999-1042.	1.2	11
24	3D Printing to Increase the Flexibility of the Chemical Synthesis of Biologically Active Molecules: Design of On-Demand Gas Generation Reactors. International Journal of Molecular Sciences, 2021, 22, 9919.	1.8	9
25	One-Pot Synthesis and Asymmetric Oxidation of 2-Nitro-4-(Trifluoromethyl)Benzene Containing Sulfides. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1885-1894.	0.8	8
26	Comparing Separation <i>vs</i> . Fresh Start to Assess Reusability of Pd/C Catalyst in Liquidâ€Phase Hydrogenation. ChemCatChem, 2021, 13, 3656-3661.	1.8	6
27	Cycloaddition Reactions of <i>inâ€situ</i> Generated C ₂ D ₂ in Dioxane: Efficient Synthetic Approach to D ₂ ‣abeled Nitrogen Heterocycles. European Journal of Organic Chemistry, 2021, 2021, 5640-5648.	1.2	6
28	Sustainable Hydrogenation of Vinyl Derivatives Using Pd/C Catalysts. Catalysts, 2021, 11, 179.	1.6	5
29	Thermal Mapping of Self-Promoted Calcium Carbide Reactions for Performing Energy-Economic Processes. International Journal of Molecular Sciences, 2022, 23, 2763.	1.8	4
30	Synthesis of new sulfinyl derivatives of 4,5-diphenyl-4H-1,2,4-triazoles. Russian Journal of Organic Chemistry, 2011, 47, 1433-1435.	0.3	2
31	Phosphorylated flavonoids as selective carboxylesterase inhibitors. Mendeleev Communications, 2019, 29, 61-63.	0.6	2