Stefan F Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3169727/publications.pdf

Version: 2024-02-01

71 papers

3,604 citations

147801 31 h-index 59 g-index

77 all docs

77 docs citations

times ranked

77

4256 citing authors

#	Article	IF	Citations
1	Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nature Immunology, 2010, 11, 814-819.	14.5	525
2	Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Medicine, 2014, 20, 648-654.	30.7	241
3	Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. Journal of Experimental Medicine, 2008, 205, 2151-2162.	8.5	195
4	Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. Journal of Experimental Medicine, 2010, 207, 2609-2619.	8.5	183
5	Contact Sensitizers Induce Skin Inflammation via ROS Production and Hyaluronic Acid Degradation. PLoS ONE, 2012, 7, e41340.	2.5	153
6	Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. European Journal of Immunology, 2005, 35, 1056-1065.	2.9	149
7	Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. Journal of Experimental Medicine, 2015, 212, 15-22.	8.5	143
8	T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cellular and Molecular Life Sciences, 2010, 67, 4171-4184.	5.4	131
9	Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Reports, 2012, 13, 1109-1115.	4.5	129
10	T Lymphocyte-Mediated Immune Responses to Chemical Haptens and Metal Ions: Implications for Allergic and Autoimmune Disease. International Archives of Allergy and Immunology, 2004, 134, 186-198.	2.1	108
11	Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation. PLoS ONE, 2013, 8, e62426.	2.5	98
12	New concepts in cutaneous allergy. Contact Dermatitis, 2015, 72, 2-10.	1.4	84
13	Allergic Skin Inflammation Induced by Chemical Sensitizers Is Controlled by the Transcription Factor Nrf2. Toxicological Sciences, 2013, 134, 39-48.	3.1	83
14	Allergic contact dermatitis: xenoinflammation of the skin. Current Opinion in Immunology, 2012, 24, 720-729.	5.5	81
15	Contact dermatitis: from pathomechanisms to immunotoxicology. Experimental Dermatology, 2012, 21, 382-389.	2.9	79
16	Immunological mechanisms in allergic contact dermatitis. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 124-130.	2.3	71
17	Tracking Human Contact Allergens: From Mass Spectrometric Identification of Peptide-Bound Reactive Small Chemicals to Chemical-Specific Naive Human T-Cell Priming. Toxicological Sciences, 2010, 117, 336-347.	3.1	69
18	From innate to adaptive immune responses in contact hypersensitivity. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 289-293.	2.3	67

#	Article	IF	CITATIONS
19	Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis, 2017, 77, 1-16.	1.4	64
20	Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. MBio, 2017, 8, .	4.1	55
21	Pathomechanisms of Contact Sensitization. Current Allergy and Asthma Reports, 2017, 17, 83.	5.3	53
22	Recent advances in understanding and managing contact dermatitis. F1000Research, 2018, 7, 810.	1.6	52
23	Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune Stimulation Via ROS-Dependent Inflammasome Activation. Journal of Investigative Dermatology, 2017, 137, 367-376.	0.7	47
24	Nrf2 Involvement in Chemical-Induced Skin Innate Immunity. Frontiers in Immunology, 2019, 10, 1004.	4.8	47
25	Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC $\hat{a} \in \mathbb{R}^3$ and TNF- $\hat{l} = \mathbb{R}^3$ readout. Toxicology in Vitro, 2013, 27, 1180-1185.	2.4	46
26	Adaptation in the innate immune system and heterologous innate immunity. Cellular and Molecular Life Sciences, 2014, 71, 4115-4130.	5.4	45
27	Antiâ€inflammatory and immuneâ€regulatory mechanisms prevent contact hypersensitivity to <i>Arnica montana</i> L Experimental Dermatology, 2008, 17, 849-857.	2.9	41
28	Allergic contact dermatitis: A commentary on the relationship between T lymphocytes and skin sensitising potency. Toxicology, 2012, 291, 18-24.	4.2	41
29	The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors. Journal of Immunology, 2017, 199, 1223-1237.	0.8	41
30	Crosstalk of regulatory T cells and tolerogenic dendritic cells prevents contact allergy in subjects with low zone tolerance. Journal of Allergy and Clinical Immunology, 2012, 130, 781-797.e11.	2.9	39
31	Fas-Mediated Inhibition of CD4+ T Cell Priming Results in Dominance of Type 1 CD8+ T Cells in the Immune Response to the Contact Sensitizer Trinitrophenyl. Journal of Immunology, 2004, 173, 3178-3185.	0.8	34
32	Lack of Type 2 Innate Lymphoid Cells Promotes a Type I-Driven Enhanced Immune Response in Contact Hypersensitivity. Journal of Investigative Dermatology, 2018, 138, 1962-1972.	0.7	31
33	Interactions of Chemicals and Metal Ions with Proteins and Role for Immune Responses. Mini-Reviews in Medicinal Chemistry, 2006, 6, 247-255.	2.4	26
34	Role of PKC- \hat{l}^2 in chemical \hat{A} allergen-induced CD86 expression and IL-8 release in THP-1 cells. Archives of Toxicology, 2014, 88, 415-424.	4.2	26
35	Immunoregulation of skin sensitization and regulatory T cells. Contact Dermatitis, 2012, 67, 179-183.	1.4	24
36	Contact Hypersensitivity. Current Protocols in Immunology, 2016, 113, 4.2.1-4.2.7.	3.6	24

#	Article	IF	CITATIONS
37	<i>In vitro</i> and <i>in vivo</i> analysis of pro―and antiâ€inflammatory effects of weak and strong contact allergens. Experimental Dermatology, 2010, 19, 1007-1013.	2.9	22
38	In Vivo Expansion of Endogenous Regulatory T Cell Populations Induces Long-Term Suppression of Contact Hypersensitivity. Journal of Immunology, 2016, 197, 1567-1576.	0.8	19
39	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	3.3	18
40	Efficiency of Dendritic Cell Vaccination against B16 Melanoma Depends on the Immunization Route. PLoS ONE, 2014, 9, e105266.	2.5	18
41	Innate and Adaptive Immune Responses in Allergic Contact Dermatitis and Autoimmune Skin Diseases. Inflammation and Allergy: Drug Targets, 2007, 6, 236-244.	1.8	17
42	Induction of Contact Hypersensitivity in the Mouse Model. Methods in Molecular Biology, 2013, 961, 325-335.	0.9	15
43	Correlation of Contact Sensitizer Potency with T Cell Frequency and TCR Repertoire Diversity. Exs, 2014, 104, 101-114.	1.4	15
44	ILâ€10 signaling in dendritic cells is required for tolerance induction in a murine model of allergic airway inflammation. European Journal of Immunology, 2019, 49, 302-312.	2.9	14
45	Inter-α-Trypsin Inhibitor Heavy Chain 5 (ITIH5) Is a Natural Stabilizer of Hyaluronan That Modulates Biological Processes in the Skin. Skin Pharmacology and Physiology, 2020, 33, 198-206.	2.5	13
46	Proâ€inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Angâ€(1â€7). EMBO Molecular Medicine, 2021, 13, e14392.	6.9	13
47	IRE1 and PERK signaling regulates inflammatory responses in a murine model of contact hypersensitivity. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 966-978.	5.7	10
48	Safe cosmetics without animal testing? Contributions of the EU Project Sens-it-iv. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2009, 4, 41-48.	1.4	8
49	Mechanistic Understanding of Contact Allergy. Cosmetics, 2016, 3, 8.	3.3	8
50	Contact allergens induce CD8+T cell-derived interleukin 10 that appears dispensable for regulation of contact hypersensitivity. Experimental Dermatology, 2017, 26, 449-451.	2.9	8
51	T Cell Responses to Contact Allergens. Exs, 2014, 104, 41-49.	1.4	7
52	Plant Allergen-Induced Contact Dermatitis. Planta Medica, 2019, 85, 528-534.	1.3	6
53	Mechanisms of Irritant and Allergic Contact Dermatitis. , 2021, , 95-120.		6
54	Lack of biglycan reduces contact hypersensitivity in mice. Contact Dermatitis, 2018, 79, 326-328.	1.4	5

#	Article	IF	CITATIONS
55	Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis. Methods in Molecular Biology, 2016, 1390, 319-340.	0.9	5
56	Contact hypersensitivity: T-cell based assay. Current Opinion in Toxicology, 2017, 5, 39-45.	5.0	4
57	Feeding of a fatâ€enriched diet causes the loss of resistance to contact hypersensitivity. Contact Dermatitis, 2021, 85, 398-406.	1.4	4
58	Innate Immune Mechanisms in Contact Dermatitis. Handbook of Experimental Pharmacology, 2021, 268, 297-310.	1.8	4
59	Therapeutic targeting of endoplasmic reticulum stress in acute graft- <i>versus</i> -host disease. Haematologica, 2022, 107, 1538-1554.	3. 5	3
60	Editorial: Innate Immune Cell Determinants of T Cell Immunity: From Basic Mechanisms to Clinical Implications. Frontiers in Immunology, 2016, 6, 664.	4.8	1
61	Novel concepts of immune responses to chemicals in allergic contact dermatitis. Allergo Journal International, 2016, 25, 1-5.	2.0	1
62	Identification of Contact Allergens by In Vitro Cell Culture-Based Methods. , 2018, , 1-20.		1
63	Tools and Methods for Identification and Analysis of Rare Antigen-Specific T Lymphocytes. Exs, 2014, 104, 73-88.	1.4	1
64	The Human T Cell Priming Assay (hTCPA)., 2017,, 449-454.		1
65	Novel concepts of immune responses to chemicals in allergic contact dermatitis. Allergo Journal, 2016, 25, 17-21.	0.1	O
66	Contact Allergy. , 2018, , 43-49.		0
67	Identification of Contact Allergens by In Vitro Cell Culture–Based Methods. , 2012, , 1155-1168.		O
68	Skin Inflammation Models in Animals. , 2013, , 1-11.		0
69	Skin Inflammation Models in Animals. , 2016, , 1201-1210.		0
70	Identification of Contact Allergens by In Vitro Cell Culture-Based Methods. , 2020, , 1589-1607.		0
71	Mechanisms of Irritant and Allergic Contact Dermatitis. , 2020, , 1-26.		O