
Kathy O Lui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3169382/publications.pdf Version: 2024-02-01

Κλτην Ο Γιμ

#	Article	IF	CITATIONS
1	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	9.4	528
2	Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proceedings of the United States of America, 2009, 106, 12055-12060.	3.3	293
3	Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7786-E7795.	3.3	242
4	Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Frontiers in Immunology, 2018, 9, 585.	2.2	214
5	Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nature Reviews Cardiology, 2018, 15, 445-456.	6.1	179
6	Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 245-267.	5.7	172
7	Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation, 2018, 138, 793-805.	1.6	163
8	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	3.9	146
9	The Biology of Cell-free DNA Fragmentation and the Roles of DNASE1, DNASE1L3, and DFFB. American Journal of Human Genetics, 2020, 106, 202-214.	2.6	127
10	Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Research, 2016, 26, 119-130.	5.7	122
11	Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Research, 2013, 23, 1172-1186.	5.7	89
12	Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circulation Research, 2018, 122, 774-789.	2.0	88
13	Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nature Communications, 2016, 7, 13369.	5.8	87
14	Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Research, 2014, 24, 820-841.	5.7	81
15	GATA4 regulates Fgf16 to promote heart repair after injury. Development (Cambridge), 2016, 143, 936-49.	1.2	79
16	Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics, 2019, 9, 4324-4341.	4.6	79
17	Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Research, 2012, 22, 142-154.	5.7	77
18	Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Developmental Cell, 2020, 54, 593-607.e5.	3.1	70

KATHY O LUI

#	Article	IF	CITATIONS
19	A Self-restricted CRISPR System to Reduce Off-target Effects. Molecular Therapy, 2016, 24, 1508-1510.	3.7	66
20	Genetic Fate Mapping Defines the Vascular Potential of Endocardial Cells in the Adult Heart. Circulation Research, 2018, 122, 984-993.	2.0	65
21	Lineage Tracing Reveals the Bipotency of SOX9+ Hepatocytes during Liver Regeneration. Stem Cell Reports, 2019, 12, 624-638.	2.3	65
22	Regulatory T Cells Promote Apelin-Mediated Sprouting Angiogenesis in Type 2 Diabetes. Cell Reports, 2018, 24, 1610-1626.	2.9	60
23	Concise Review: Immune Recognition of Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 797-803.	1.4	58
24	Embryonic Stem Cells: Overcoming the Immunological Barriers to Cell Replacement Therapy. Current Stem Cell Research and Therapy, 2009, 4, 70-80.	0.6	57
25	Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a014035-a014035.	2.9	45
26	Calcitonin Gene-Related Peptide Enhances Distraction Osteogenesis by Increasing Angiogenesis. Tissue Engineering - Part A, 2021, 27, 87-102.	1.6	44
27	A Role for Regulatory T Cells in Acceptance of ESC-Derived Tissues Transplanted Across an Major Histocompatibility Complex Barrier A. Stem Cells, 2010, 28, 1905-1914.	1.4	43
28	Specific ablation of CD4 ⁺ T-cells promotes heart regeneration in juvenile mice. Theranostics, 2020, 10, 8018-8035.	4.6	43
29	Endocardium Contributes to Cardiac Fat. Circulation Research, 2016, 118, 254-265.	2.0	42
30	Fate Mapping of Sca1 + Cardiac Progenitor Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2967-2969.	1.6	42
31	Dickkopf-3, a Tissue-Derived Modulator of Local T-Cell Responses. Frontiers in Immunology, 2015, 6, 78.	2.2	40
32	Targeting endothelial dysfunction and inflammation. Journal of Molecular and Cellular Cardiology, 2022, 168, 58-67.	0.9	40
33	Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Research, 2017, 27, 1157-1177.	5.7	39
34	Embryonic senescent cells re-enter cell cycle and contribute to tissues after birth. Cell Research, 2018, 28, 775-778.	5.7	37
35	Dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development (Cambridge), 2018, 145, .	1.2	35
36	Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic β-like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2020, 15, 1111-1126.	2.3	35

ΚΑΤΗΥ Ο LUI

#	Article	IF	CITATIONS
37	Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nature Metabolism, 2021, 3, 352-365.	5.1	35
38	DNase1 Does Not Appear to Play a Major Role in the Fragmentation of Plasma DNA in a Knockout Mouse Model. Clinical Chemistry, 2018, 64, 406-408.	1.5	34
39	Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. Journal of Molecular and Cellular Cardiology, 2022, 164, 69-82.	0.9	34
40	Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Medicine, 2018, 10, 71.	3.6	30
41	Genetic Tracing Identifies Early Segregation of the Cardiomyocyte and Nonmyocyte Lineages. Circulation Research, 2019, 125, 343-355.	2.0	29
42	CD8 ⁺ T-cell plasticity regulates vascular regeneration in type-2 diabetes. Theranostics, 2020, 10, 4217-4232.	4.6	29
43	A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. Journal of Cell Biology, 2015, 210, 1257-1268.	2.3	27
44	Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Research, 2014, 13, 693-704.	0.3	26
45	Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nature Communications, 2014, 5, 5629.	5.8	26
46	An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics, 2020, 10, 8924-8938.	4.6	25
47	Seamless Genetic Recording of Transiently Activated Mesenchymal Gene Expression in Endothelial Cells During Cardiac Fibrosis. Circulation, 2021, 144, 2004-2020.	1.6	25
48	The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Molecular Therapy, 2021, 29, 2253-2267.	3.7	24
49	Generation of a selfâ€cleaved inducible Cre recombinase for efficient temporal genetic manipulation. EMBO Journal, 2020, 39, e102675.	3.5	22
50	A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4. Stem Cell Reports, 2022, 17, 538-555.	2.3	22
51	Gain-of-Function Mutations of SLC16A11 Contribute to the Pathogenesis of Type 2 Diabetes. Cell Reports, 2019, 26, 884-892.e4.	2.9	21
52	Smooth muscle-derived macrophage-like cells contribute to multiple cell lineages in the atherosclerotic plaque. Cell Discovery, 2021, 7, 111.	3.1	19
53	Genetic lineage tracing of resident stem cells by DeaLT. Nature Protocols, 2018, 13, 2217-2246.	5.5	17
54	Ectopic expression of recipient CD47 inhibits mouse macrophageâ€mediated immune rejection against human stem cell transplants. FASEB Journal, 2019, 33, 484-493.	0.2	17

ΚΑΤΗΥ Ο LUI

#	Article	IF	CITATIONS
55	A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. Molecular Therapy - Nucleic Acids, 2020, 20, 673-686.	2.3	17
56	Harnessing orthogonal recombinases to decipher cell fate with enhanced precision. Trends in Cell Biology, 2022, 32, 324-337.	3.6	13
57	The Formation of Coronary Vessels in Cardiac Development and Disease. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037168.	2.3	12
58	Effects of nucleases on cell-free extrachromosomal circular DNA. JCI Insight, 2022, 7, .	2.3	12
59	Lineage tracing clarifies the cellular origin of tissue-resident macrophages in the developing heart. Journal of Cell Biology, 2022, 221, .	2.3	12
60	Vedolizumab-mediated integrin α4β7 blockade does not control HIV-1SF162 rebound after combination antiretroviral therapy interruption in humanized mice. Aids, 2019, 33, F1-F12.	1.0	10
61	Coreceptor blockade targeting CD4 and CD8 allows acceptance of allogeneic human pluripotent stem cell grafts in humanized mice. Biomaterials, 2020, 248, 120013.	5.7	10
62	VEGF-A: The Inductive Angiogenic Factor for Development, Regeneration and Function of Pancreatic Beta Cells. Current Stem Cell Research and Therapy, 2014, 9, 396-400.	0.6	10
63	Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 852775.	1.1	10
64	Pluripotent stem cellâ€based heart regeneration: From the developmental and immunological perspectives. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 98-108.	3.6	9
65	Deconstructive somatic cell nuclear transfer reveals novel regulatory T-cell subsets. Journal of Allergy and Clinical Immunology, 2018, 142, 997-1000.e4.	1.5	9
66	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	0.6	9
67	Genetic Proliferation Tracing Reveals a Rapid Cell Cycle Withdrawal in Preadolescent Cardiomyocytes. Circulation, 2022, 145, 410-412.	1.6	9
68	Single-cell transcriptomics uncover distinct innate and adaptive cell subsets during tissue homeostasis and regeneration. Journal of Leukocyte Biology, 2020, 108, 1593-1602.	1.5	6
69	YY1 Regulates Glucose Homeostasis Through Controlling Insulin Transcription in Pancreatic Î ² -Cells. Diabetes, 2022, 71, 961-977.	0.3	6
70	Human pluripotent stem cell-derived cardiovascular progenitors for heart regeneration. Drug Discovery Today: Disease Models, 2012, 9, e189-e197.	1.2	5
71	Induced pluripotent stem cells as a disease model for studying inherited arrhythmias: promises and hurdles. Drug Discovery Today: Disease Models, 2012, 9, e199-e207.	1.2	5
72	Reprogramming for cardiac regeneration. Global Cardiology Science & Practice, 2014, 2014, 44.	0.3	4

KATHY O LUI

#	Article	IF	CITATIONS
73	Vascular Development and Regeneration in the Mammalian Heart. Journal of Cardiovascular Development and Disease, 2016, 3, 23.	0.8	4
74	Nuclease deficiencies alter plasma cell-free DNA methylation profiles. Genome Research, 2021, 31, 2008-2021.	2.4	4
75	Dual Cre and Dre recombinases mediate synchronized lineage tracing and cell subset ablation inÂvivo. Journal of Biological Chemistry, 2022, 298, 101965.	1.6	4
76	Dual Genetic Lineage Tracing Reveals Capillary to Artery Formation in the Adult Heart. Circulation, 2022, 145, 1179-1181.	1.6	3
77	Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA. Methods in Molecular Biology, 2016, 1428, 307-317.	0.4	2
78	Individual Variation in Conditional Î ² Cell Ablation Mice Contributes Significant Biases in Evaluating Î ² Cell Functional Recovery. Frontiers in Endocrinology, 2017, 8, 242.	1.5	2
79	Deciphering the Role of microRNAs in Regulation of Immune Surveillance, Self-Tolerance and Allograft Transplant Outcome. Current Stem Cell Research and Therapy, 2018, 13, 336-344.	0.6	2
80	A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. Journal of Experimental Medicine, 2015, 212, 212110IA91.	4.2	1
81	Pancreatic beta cell neogenesis: Debates and updates. Cell Metabolism, 2021, 33, 2105-2107.	7.2	1
82	Endothelial Agrin Is Dispensable for Normal and Tumor Angiogenesis. Frontiers in Cardiovascular Medicine, 2021, 8, 810477.	1.1	1
83	Editorial (Thematic Issue: Advances in Pluripotent Stem Cell-Derived Endothelial Cells: From) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
84	Replenishing the damaged heart with oxygen by nature-inspired photosynthesis. Future Cardiology, 2018, 14, 101-103.	0.5	0
85	Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts. International Journal of Molecular Sciences, 2020, 21, 5743.	1.8	0
86	Chaperone Mediated Autophagy Regulates eNOS Uncoupling in Cardiovascular Events. Circulation Research, 2021, 129, 946-948.	2.0	0