

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3169188/publications.pdf Version: 2024-02-01

YA \\//1

#	Article	IF	CITATIONS
1	Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Applied Energy, 2017, 187, 310-325.	10.1	289
2	Decoupling China's economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Science of the Total Environment, 2019, 656, 576-588.	8.0	246
3	Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors. Science of the Total Environment, 2020, 709, 135768.	8.0	204
4	What drives the carbon emission in the Chinese cities?—A case of pilot low carbon city of Beijing. Journal of Cleaner Production, 2018, 174, 343-354.	9.3	201
5	A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Science of the Total Environment, 2019, 646, 524-543.	8.0	162
6	Interpretive Structural Modeling based factor analysis on the implementation of Emission Trading System in the Chinese building sector. Journal of Cleaner Production, 2016, 127, 214-227.	9.3	160
7	Decoupling relationship between economic output and carbon emission in the Chinese construction industry. Environmental Impact Assessment Review, 2018, 71, 60-69.	9.2	160
8	Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. Journal of Cleaner Production, 2018, 175, 612-623.	9.3	157
9	Decoupling analysis of world economic growth and CO2 emissions: A study comparing developed and developing countries. Journal of Cleaner Production, 2018, 190, 94-103.	9.3	153
10	Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries. Energy Policy, 2018, 116, 30-38.	8.8	142
11	Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. Journal of Cleaner Production, 2019, 218, 96-107.	9.3	133
12	Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries?. Transportation Research, Part D: Transport and Environment, 2017, 51, 129-145.	6.8	122
13	Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Science of the Total Environment, 2020, 730, 138964.	8.0	113
14	The turning points of carbon Kuznets curve: Evidences from panel and time-series data of 164 countries. Journal of Cleaner Production, 2017, 162, 1031-1047.	9.3	97
15	The environmental Kuznets curve of CO2 emissions in the manufacturing and construction industries: A global empirical analysis. Environmental Impact Assessment Review, 2019, 79, 106303.	9.2	90
16	Estimates of the potential for energy conservation in the Chinese steel industry. Energy Policy, 2011, 39, 3680-3689.	8.8	81
17	An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design. Building and Environment, 2017, 124, 388-401.	6.9	72
18	Decomposition of energy consumption and its decoupling with economic growth in the global agricultural industry. Environmental Impact Assessment Review, 2020, 81, 106364.	9.2	72

Ya Wu

#	Article	IF	CITATIONS
19	Evaluation of electricity saving potential in China's chemical industry based on cointegration. Energy Policy, 2012, 44, 320-330.	8.8	59
20	Is the low arbon economy efficient in terms of sustainable development? A global perspective. Sustainable Development, 2019, 27, 130-152.	12.5	57
21	A new panel for analyzing the impact factors on carbon emission: A regional perspective in China. Ecological Indicators, 2019, 97, 260-268.	6.3	57
22	What makes the difference in construction carbon emissions between China and USA?. Sustainable Cities and Society, 2019, 44, 604-613.	10.4	53
23	Analysis on the evolution of low carbon city from process characteristic perspective. Journal of Cleaner Production, 2018, 187, 348-360.	9.3	49
24	The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis. Energy Policy, 2016, 95, 126-134.	8.8	45
25	Electricity saving potential of the power generation industry in China. Energy, 2012, 40, 307-316.	8.8	42
26	Key driving forces on the development of low carbon city (LCC) in China. Ecological Indicators, 2021, 124, 107379.	6.3	30
27	Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents. Energy Policy, 2017, 109, 208-217.	8.8	23
28	Comparative study on power efficiency of China's provincial steel industry and its influencing factors. Energy, 2019, 175, 1009-1020.	8.8	18
29	Does the Effort Meet the Challenge in Promoting Low-Carbon City?—A Perspective of Global Practice. International Journal of Environmental Research and Public Health, 2018, 15, 1334.	2.6	16
30	Peaks of transportation CO ₂ emissions of 119 countries for sustainable development: Results from carbon Kuznets curve. Sustainable Development, 2020, 28, 550-571.	12.5	16
31	Does resource environment carrying capacity have a coercive effect on urbanization quality? Evidence from the Yangtze River Economic Belt, China. Journal of Cleaner Production, 2022, 365, 132612.	9.3	14
32	A new experience mining approach for improving low carbon city development. Sustainable Development, 2020, 28, 922-934.	12.5	13
33	Grassland Subsidies Increase the Number of Livestock on the Tibetan Plateau: Why Does the "Payment for Ecosystem Services―Policy Have the Opposite Outcome?. Sustainability, 2021, 13, 6208.	3.2	12
34	Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study. Structural Change and Economic Dynamics, 2019, 51, 349-360.	4.5	9
35	Determinants of migration decision-making for rural households: a case study in Chongqing, China. Natural Hazards, 2020, 104, 1623-1639.	3.4	6
36	How to address properly the scale of urban infrastructures? –An empirical study of 35 large Chinese cities. Habitat International, 2021, 118, 102464.	5.8	5

#	Article	IF	CITATIONS
37	Empirical Study on the Performance of Environmental Efficiency in the Chinese Provincial Capital Cities. , 2021, , 16-28.		0