
Christopher K Cote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clindamycin Protects Nonhuman Primates Against Inhalational Anthrax But Does Not Enhance Reduction of Circulating Toxin Levels When Combined With Ciprofloxacin. Journal of Infectious Diseases, 2021, 223, 319-325.	4.0	2
2	Protection Elicited by Attenuated Live Yersinia pestis Vaccine Strains against Lethal Infection with Virulent Y. pestis. Vaccines, 2021, 9, 161.	4.4	12
3	Comparative virulence of three different strains of Burkholderia pseudomallei in an aerosol non-human primate model. PLoS Neglected Tropical Diseases, 2021, 15, e0009125.	3.0	6
4	Biological Validation of a Chemical Effluent Decontamination System. Applied Biosafety, 2021, 26, 23-32.	0.5	0
5	Proteomic Analysis of Non-human Primate Peripheral Blood Mononuclear Cells During Burkholderia mallei Infection Reveals a Role of Ezrin in Glanders Pathogenesis. Frontiers in Microbiology, 2021, 12, 625211.	3.5	1
6	Comparison of three non-human primate aerosol models for glanders, caused by Burkholderia mallei. Microbial Pathogenesis, 2021, 155, 104919.	2.9	4
7	Impact of Toll-Like Receptor-Specific Agonists on the Host Immune Response to the Yersinia pestis Plague rF1V Vaccine. Frontiers in Immunology, 2021, 12, 726416.	4.8	7
8	Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing. Frontiers in Microbiology, 2021, 12, 725776.	3.5	3
9	Anthrax toxin component, Protective Antigen, protects insects from bacterial infections. PLoS Pathogens, 2020, 16, e1008836.	4.7	6
10	Binding Sites of Anti-Lcr V Monoclonal Antibodies Are More Critical than the Avidities and Affinities for Passive Protection against Yersinia pestis Infection in a Bubonic Plague Model. Antibodies, 2020, 9, 37.	2.5	5
11	Laser Scanning Confocal Microscopy Was Used to Validate the Presence of Burkholderia pseudomallei or B. mallei in Formalin-Fixed Paraffin Embedded Tissues. Tropical Medicine and Infectious Disease, 2020, 5, 65.	2.3	0
12	Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microbial Pathogenesis, 2020, 142, 104050.	2.9	20
13	The Impact of Age and Sex on Mouse Models of Melioidosis. Pathogens, 2020, 9, 113.	2.8	5
14	Dysregulation of TNF-α and IFN-γ expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunology, 2020, 21, 5.	2.2	9
15	A Francisella novicida Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence. Frontiers in Microbiology, 2019, 10, 1343.	3.5	10
16	Deletion of Two Genes in Burkholderia pseudomallei MSHR668 That Target Essential Amino Acids Protect Acutely Infected BALB/c Mice and Promote Long Term Survival. Vaccines, 2019, 7, 196.	4.4	13
17	Disease progression in mice exposed to low-doses of aerosolized clinical isolates of Burkholderia pseudomallei. PLoS ONE, 2018, 13, e0208277.	2.5	18
18	Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS ONE, 2017, 12, e0172627.	2.5	30

CHRISTOPHER K COTE

#	Article	IF	CITATIONS
19	A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia. PLoS ONE, 2017, 12, e0174106.	2.5	17
20	Animal Models for the Pathogenesis, Treatment, and Prevention of Infection byBacillus anthracis. , 2016, , 269-311.		0
21	The <i>Bacillus anthracis</i> Exosporium: What's the Big "Hairy―Deal?. Microbiology Spectrum, 2015, 3, .	3.0	25
22	Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by <i>Bacillus anthracis</i> . Microbiology Spectrum, 2015, 3, TBS-0001-2012.	3.0	24
23	Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination. Toxins, 2015, 7, 3167-3178.	3.4	18
24	Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays. PLoS ONE, 2015, 10, e0124667.	2.5	49
25	Comparison of the early host immune response to two widely diverse virulent strains of Burkholderia pseudomallei that cause acute or chronic infections in BALB/c mice. Microbial Pathogenesis, 2015, 86, 53-63.	2.9	18
26	Characterization of Tetratricopeptide Repeat-Like Proteins in Francisella tularensis and Identification of a Novel Locus Required for Virulence. Infection and Immunity, 2014, 82, 5035-5048.	2.2	3
27	Multiple Roles of Myd88 in the Immune Response to the Plague F1-V Vaccine and in Protection against an Aerosol Challenge ofYersinia pestisCO92 in Mice. Journal of Immunology Research, 2014, 2014, 1-13.	2.2	2
28	Interrogation of the Burkholderia pseudomallei Genome to Address Differential Virulence among Isolates. PLoS ONE, 2014, 9, e115951.	2.5	29
29	Key aspects of the molecular and cellular basis of inhalational anthrax. Microbes and Infection, 2011, 13, 1146-1155.	1.9	36
30	Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microbes and Infection, 2008, 10, 613-619.	1.9	37
31	The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores. Microbial Pathogenesis, 2004, 37, 169-175.	2.9	75

TheBacillus anthracisExosporium: What's the Big "Hairy―Deal?. , 0, , 253-268.