Cheng Zhong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3168763/cheng-zhong-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,704 46 147 91 h-index g-index citations papers 168 6.69 13.6 11,555 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
147	Highly Active and Durable Single-Atom Tungsten-Doped NiS Se Nanosheet@NiS Se Nanorod Heterostructures for Water Splitting <i>Advanced Materials</i> , 2022 , e2107053	24	18
146	Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction (Adv. Mater. 2/2022). <i>Advanced Materials</i> , 2022 , 34, 2270018	24	
145	Bimetallic Multi-Level Layered Co-NiOOH/Ni S @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium <i>Small</i> , 2022 , e2106904	11	5
144	Designing Nanoporous Coral-Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. <i>Advanced Functional Materials</i> , 2022 , 32, 2110702	15.6	3
143	Atomically Dispersed Selenium Sites on Nitrogen-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	13
142	Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2021 , 34, e2106973	24	11
141	Defective Bimetallic Selenides for Selective CO Electroreduction to CO. Advanced Materials, 2021, e210	06354	6
140	Millisecond Conversion of Photovoltaic Silicon Waste to Binder-Free High Silicon Content Nanowires Electrodes (Adv. Energy Mater. 40/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170157	21.8	
139	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance ZincAir Batteries. <i>Energy & Energy & Energ</i>	4.1	9
138	Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Li-Rich Oxide Cathodes. <i>Advanced Energy Materials</i> , 2021 , 11, 2003479	21.8	14
137	Metallic-State MoS Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. <i>ACS Applied Materials & District Materials & Dist</i>	9.5	10
136	Palladium Particles Modified by Mixed-Frequency Square-Wave Potential Treatment to Enhance Electrocatalytic Performance for Formic Acid Oxidation. <i>Catalysts</i> , 2021 , 11, 522	4	0
135	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. <i>Advanced Materials</i> , 2021 , 33, e2006461	24	18
134	Metal chalcogenides: An emerging material for electrocatalysis. APL Materials, 2021, 9, 050902	5.7	5
133	Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems. <i>Journal of Electrical Engineering and Technology</i> , 2021 , 16, 2497	1.4	O
132	Waste to wealth: Defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. <i>Science China Materials</i> , 2021 , 64, 2710-2718	7.1	11
131	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. <i>Advanced Science</i> , 2021 , 8, e2101111	13.6	22

130	Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. <i>Nano Research</i> , 2021 , 14, 1149-1155	10	48
129	NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. <i>Science China Materials</i> , 2021 , 64, 852-860	7.1	12
128	Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. <i>Science China Materials</i> , 2021 , 64, 611-620	7.1	7
127	Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. <i>Science China Materials</i> , 2021 , 64, 1-26	7.1	17
126	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13926-13935	13	10
125	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. <i>Nano-Micro Letters</i> , 2021 , 13, 59	19.5	20
124	Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Transactions of Tianjin University, 2021 , 27, 248-268	2.9	9
123	Controlled Synthesis and Structure Engineering of Transition Metal-based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zinc-Air Battery and Water-Splitting Devices. <i>ChemSusChem</i> , 2021 , 14, 1659-1673	8.3	3
122	Inversely Tuning the CO Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7602-7606	16.4	29
121	Encapsulating Cobalt Nanoparticles in Interconnected N-Doped Hollow Carbon Nanofibers with Enriched Co?N?C Moiety for Enhanced Oxygen Electrocatalysis in Zn-Air Batteries. <i>Advanced Science</i> , 2021 , 8, e2101438	13.6	21
120	Zinc-Air Batteries: Mapping the Design of Electrolyte Materials for Electrically Rechargeable ZincAir Batteries (Adv. Mater. 31/2021). <i>Advanced Materials</i> , 2021 , 33, 2170243	24	
119	Millisecond Conversion of Photovoltaic Silicon Waste to Binder-Free High Silicon Content Nanowires Electrodes. <i>Advanced Energy Materials</i> , 2021 , 11, 2102103	21.8	11
118	ZincAir Batteries: A Rechargeable ZnAir Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier (Adv. Mater. 22/2020). <i>Advanced Materials</i> , 2020 , 32, 2070172	24	2
117	Identifying Dense NiSe /CoSe Heterointerfaces Coupled with Surface High-Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2000607	24	143
116	A Solution-based Method for Synthesizing Pyrite-type Ferrous Metal Sulfide Microspheres with Efficient OER Activity. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2231-2238	4.5	2
115	Tungsten disulfide-based nanomaterials for energy conversion and storage. <i>Tungsten</i> , 2020 , 2, 109-133	4.6	21
114	Acceptor-Doping Accelerated Charge Separation in Cu O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18463-18467	16.4	31
113	Frontispiz: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020 , 132,	3.6	1

112	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zincthanganese dioxide batteries. <i>Nature Energy</i> , 2020 , 5, 440-449	62.3	203
111	Advanced Characterization Techniques for Identifying the Key Active Sites of Gas-Involved Electrocatalysts. <i>Advanced Functional Materials</i> , 2020 , 30, 2001704	15.6	11
110	Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes 2020 , 2, 370-386		35
109	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. <i>Nature Reviews Materials</i> , 2020 , 5, 276-294	73.3	151
108	Cationic and anionic redox in lithium-ion based batteries. <i>Chemical Society Reviews</i> , 2020 , 49, 1688-1705	5 58.5	84
107	Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7245-7250	16.4	103
106	Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 7312-7317	3.6	10
105	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 8115-8123	9.5	23
104	Review of Emerging Potassium-Sulfur Batteries. <i>Advanced Materials</i> , 2020 , 32, e1908007	24	51
103	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. <i>Transactions of Tianjin University</i> , 2020 , 26, 92-103	2.9	65
102	Engineering the Metal/Oxide Interface of Pd Nanowire@CuO Electrocatalysts for Efficient Alcohol Oxidation Reaction. <i>Small</i> , 2020 , 16, e1904964	11	29
101	Enhanced Electrocatalytic Activities toward the Ethanol Oxidation of Nanoporous Gold Prepared via Solid-Phase Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 336-343	6.1	10
100	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5092-5101	16.4	26
99	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. <i>Angewandte Chemie</i> , 2020 , 132, 5130-5139	3.6	6
98	Air-Assisted Transient Synthesis of Metastable Nickel Oxide Boosting Alkaline Fuel Oxidation Reaction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001397	21.8	23
97	High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2001331	21.8	41
96	Methods for producing an easily assembled zinc-air battery. <i>MethodsX</i> , 2020 , 7, 100973	1.9	1
95	Flexible and Wearable Power Sources for Next-Generation Wearable Electronics. <i>Batteries and Supercaps</i> , 2020 , 3, 1262-1274	5.6	14

(2019-2020)

94	Kirigami-Inspired Flexible and Stretchable Zinc-Air Battery Based on Metal-Coated Sponge Electrodes. <i>ACS Applied Materials & Electrodes. ACS ACS Applied Materials & Electrodes. ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	14
93	Flexible and Wearable Power Sources for Next-Generation Wearable Electronics. <i>Batteries and Supercaps</i> , 2020 , 3, 1261-1261	5.6	1
92	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. <i>Frontiers in Chemistry</i> , 2020 , 8, 579828	5	5
91	3D Foam Anode and Hydrogel Electrolyte for High-Performance and Stable Flexible ZincAir Battery. <i>ChemistrySelect</i> , 2020 , 5, 8305-8310	1.8	8
90	Nanomanufacturing of RGO-CNT Hybrid Film for Flexible Aqueous Al-Ion Batteries. <i>Small</i> , 2020 , 16, e20	0 <u>2</u> 856	17
89	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. <i>Nano-Micro Letters</i> , 2020 , 12, 162	19.5	31
88	Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2020 , 32, e2006034	24	56
87	Lattice-Strain Engineering of Homogeneous NiS Se Core-Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. <i>Advanced Materials</i> , 2020 , 32, e2000231	24	79
86	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. <i>Advanced Materials</i> , 2020 , 32, e2003414	24	95
85	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. <i>Science China Materials</i> , 2020 , 63, 249-257	7.1	39
84	A Rechargeable Zn-Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier. <i>Advanced Materials</i> , 2020 , 32, e1908127	24	79
83	Challenges in Zinc Electrodes for Alkaline ZincAir Batteries: Obstacles to Commercialization. <i>ACS Energy Letters</i> , 2019 , 4, 2259-2270	20.1	147
82	Enhanced antibacterial properties of biocompatible titanium electrochemically deposited Ag/TiO nanotubes and chitosan-gelatin-Ag-ZnO complex coating <i>RSC Advances</i> , 2019 , 9, 4521-4529	3.7	12
81	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4763-4773	6.1	18
80	Advances in the development of power supplies for the Internet of Everything. <i>Informa</i> Materilly, 2019 , 1, 130-139	23.1	67
79	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni3+ active sites for efficient water-splitting and zincair batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23787-23793	13	46
78	Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes. <i>Advanced Materials</i> , 2019 , 31, e1900429	24	172
77	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1900955	21.8	52

76	Recent Progress in Advanced Characterization Methods for Silicon-Based Lithium-Ion Batteries. Small Methods, 2019 , 3, 1900158	12.8	20
75	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1588-1593	6.1	11
74	Identifying the Activation of Bimetallic Sites in NiCo S @g-C N -CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. <i>Advanced Materials</i> , 2019 , 31, e1808281	24	221
73	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. <i>Science China Materials</i> , 2019 , 62, 1096-1104	7.1	28
72	Bimetallic Metal-Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 15662-15669	9.5	71
71	Generation of Nanoparticle, Atomic-Cluster, and Single-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in ZincAir Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 5413-5418	3.6	82
70	Electrocatalysis: Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019 , 9, 1970100	21.8	1
69	Sodium-Ion Batteries: 1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries (Adv. Energy Mater. 30/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970117	21.8	3
68	Recent advances and challenges in divalent and multivalent metal electrodes for metallir batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18183-18208	13	87
67	Potassium-Ion Batteries: Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes (Adv. Mater. 30/2019). <i>Advanced Materials</i> , 2019 , 31, 1970217	24	39
66	1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901146	21.8	32
65	Toward Flexible and Wearable Zn-Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-	1 <u>9</u> .349	10
64	Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. <i>Advanced Materials</i> , 2019 , 31, e1905622	24	340
63	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. <i>Nature Communications</i> , 2019 , 10, 4767	17.4	101
62	Investigation of the Environmental Stability of Poly(vinyl alcohol)-KOH Polymer Electrolytes for Flexible Zinc-Air Batteries. <i>Frontiers in Chemistry</i> , 2019 , 7, 678	5	15
61	Confined Fe2VO4?Nitrogen-Doped Carbon Nanowires with Internal Void Space for High-Rate and Ultrastable Potassium-Ion Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1902674	21.8	57
60	Controlled Synthesis of Ni-Doped MoS Hybrid Electrode for Synergistically Enhanced Water-Splitting Process. <i>Chemistry - A European Journal</i> , 2019 , 26, 4097	4.8	11
59	Generation of Nanoparticle, Atomic-Cluster, and Single-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5359-5364	16.4	323

(2018-2019)

58	in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. <i>Chemical Communications</i> , 2019 , 55, 13279-13282	5.8	22
57	Long-battery-life flexible zinclir battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25449-25457	13	29
56	Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable ZnBir batteries. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 3554-3561	6.8	19
55	Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation. <i>Catalysts</i> , 2019 , 9, 4	4	5
54	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery. <i>ACS Applied Materials & Damp; Interfaces</i> , 2019 , 11, 4915-4921	9.5	56
53	Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. <i>Energy Storage Materials</i> , 2019 , 21, 69-76	19.4	33
52	Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. <i>Rare Metals</i> , 2019 , 38, 115-121	5.5	12
51	Solution process synthesis of morphology-controllable CoSe2 nanocrystals with efficient bifunctional catalytic activity. <i>Ferroelectrics</i> , 2018 , 523, 126-133	0.6	
50	Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5733-5739	13	132
49	Controllable Synthesis of Ni Se (0.5 lk ll) Nanocrystals for Efficient Rechargeable Zinc-Air Batteries and Water Splitting. <i>ACS Applied Materials & Discrete Section</i> , 10, 13675-13684	9.5	80
48	Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8109-8119	13	79
47	Metal Air Batteries: Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 10/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870043	21.8	6
46	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. <i>Science China Materials</i> , 2018 , 61, 697-706	7.1	28
45	ZincAir Batteries: Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable ZincAir Batteries (Adv. Mater. 4/2018). <i>Advanced Materials</i> , 2018 , 30, 1870027	24	2
44	In-situ multi-deposition process for cobalt-sulfide synthesis with efficient bifunctional catalytic activity. <i>Ferroelectrics</i> , 2018 , 523, 119-125	0.6	2
43	Atomic Layer Co O Nanosheets: The Key to Knittable Zn-Air Batteries. <i>Small</i> , 2018 , 14, e1702987	11	51
42	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1702222	21.8	182
41	One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy. <i>Coatings</i> , 2018 , 8, 148	2.9	6

40	MetalAir Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396	21.8	104
39	Electrochemical Oxidation of Chlorine-Doped Co(OH) Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 796-805	9.5	56
38	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Water-Splitting Performance. <i>Small</i> , 2018 , 14, e1803666	11	62
37	Zinc-Air Batteries: Atomic Layer Co3O4 Nanosheets: The Key to Knittable ZnAir Batteries (Small 43/2018). <i>Small</i> , 2018 , 14, 1870200	11	3
36	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025	3.9	1
35	Electrocatalysis: Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting (Adv. Energy Mater. 24/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870110	21.8	8
34	Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. <i>Advanced Energy Materials</i> , 2018 , 8, 1800935	21.8	217
33	Atomically Thin Mesoporous Co O Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries. <i>Advanced Materials</i> , 2018 , 30, 1703657	24	233
32	Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc Air Battery Integrated with Flexible Display. <i>Advanced Energy Materials</i> , 2017 , 7, 17007	7 3 1.8	218
31	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 18856-18864	9.5	27
30	Clarifying the Controversial Catalytic Performance of Co(OH) and CoO for Oxygen Reduction/Evolution Reactions toward Efficient Zn-Air Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 22694-22703	9.5	97
29	Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702526	24	131
28	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. <i>ACS Applied Materials & Discrete Ammonia</i> 9, 27765-27772	9.5	20
27	Studies on the Electrochemical Stability of Preferentially (100)-Oriented Pt Prepared through Three Different Methods. <i>ChemElectroChem</i> , 2017 , 4, 66-74	4.3	7
26	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. <i>Journal of Materials Science</i> , 2017 , 52, 804-814	4.3	19
25	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. <i>Catalysts</i> , 2017 , 7, 366	4	23
24	PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. <i>Nanoscale</i> , 2016 , 8, 3962-72	7.7	48
23	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11060-11068	13	59

(-2016)

22	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 506-506	4.3	
21	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. <i>ChemElectroChem</i> , 2016 , 3, 537-551	4.3	28
20	Fundamentals of Electrochemical Supercapacitors. <i>Electrochemical Energy Storage and Conversion</i> , 2016 , 1-30		3
19	Compatibility of Electrolytes with Inactive Components of Electrochemical Supercapacitors. <i>Electrochemical Energy Storage and Conversion</i> , 2016 , 255-274		2
18	Electrolytes for Electrochemical Supercapacitors. <i>Electrochemical Energy Storage and Conversion</i> , 2016 , 31-254		4
17	A review of electrolyte materials and compositions for electrochemical supercapacitors. <i>Chemical Society Reviews</i> , 2015 , 44, 7484-539	58.5	2002
16	Fabrication of platinum submonolayer electrodes and their high electrocatalytic activities for ammonia oxidation. <i>Electrochimica Acta</i> , 2015 , 177, 30-35	6.7	12
15	Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. <i>ACS Nano</i> , 2015 , 9, 1730-9	16.7	222
14	Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination. <i>Electrochimica Acta</i> , 2014 , 150, 146-150	6.7	27
13	Interdiffusion kinetics of the intermetallic coatings on AZ91D magnesium alloy formed in molten salts at lower temperatures. <i>Journal of Alloys and Compounds</i> , 2014 , 610, 173-179	5.7	18
12	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. <i>Science China Materials</i> , 2014 , 57, 13-25	7.1	38
11	Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia. <i>Journal of Power Sources</i> , 2013 , 223, 165-174	8.9	49
10	Protective diffusion coatings on magnesium alloys: A review of recent developments. <i>Journal of Alloys and Compounds</i> , 2012 , 520, 11-21	5.7	112
9	Lower temperature fabrication of continuous intermetallic coatings on AZ91D magnesium alloy in molten salts. <i>Journal of Alloys and Compounds</i> , 2010 , 504, 377-381	5.7	31
8	Phase Transfer of Mo 2 C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. <i>Advanced Functional Materials</i> ,2110783	15.6	7
7	Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. <i>Nano Research</i> ,1	10	4
6	Multiple Twin Boundary-Regulated Metastable Pd for Ethanol Oxidation Reaction. <i>Advanced Energy Materials</i> ,2103505	21.8	11
5	The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. Electrochemical Energy Reviews,1	29.3	9

4	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. <i>Nano Research</i> ,1	10	7
3	Building a Library for Catalysts Research Using High-Throughput Approaches. <i>Advanced Functional Materials</i> ,2107862	15.6	O
2	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. <i>Particle and Particle Systems Characterization</i> ,2200013	3.1	O
1	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. <i>Science China Materials</i> ,1	7.1	O