
Cheng Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	38.1	2,723
2	Atomically Dispersed Binary Coâ€Ni Sites in Nitrogenâ€Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1905622.	21.0	537
3	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	13.8	500
4	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nature Energy, 2020, 5, 440-449.	39.5	430
5	ldentifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @gâ€C ₃ N ₄ â€CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	21.0	315
6	Ultrathin Co ₃ O ₄ Layers with Large Contact Area on Carbon Fibers as Highâ€Performance Electrode for Flexible Zinc–Air Battery Integrated with Flexible Display. Advanced Energy Materials, 2017, 7, 1700779.	19.5	309
7	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	21.0	302
8	Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1802605.	19.5	296
9	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	19.5	286
10	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	48.7	284
11	Challenges in Zinc Electrodes for Alkaline Zinc–Air Batteries: Obstacles to Commercialization. ACS Energy Letters, 2019, 4, 2259-2270.	17.4	276
12	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	21.0	251
13	Sub-3 nm Co ₃ O ₄ Nanofilms with Enhanced Supercapacitor Properties. ACS Nano, 2015, 9, 1730-1739.	14.6	248
14	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	19.5	243
15	Sulfurâ€Grafted Hollow Carbon Spheres for Potassiumâ€Ion Battery Anodes. Advanced Materials, 2019, 31, e1900429.	21.0	235
16	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	21.0	206
17	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nature Communications, 2019, 10, 4767.	12.8	199
18	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 7245-7250.	13.8	196

#	Article	IF	CITATIONS
19	Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO ₂ rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 5733-5739.	10.3	182
20	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	21.0	172
21	Defect Engineering of Chalcogenâ€Tailored Oxygen Electrocatalysts for Rechargeable Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1702526.	21.0	171
22	Lattice‣train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	21.0	158
23	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science, 2021, 8, e2101111.	11.2	157
24	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	19.5	156
25	Protective diffusion coatings on magnesium alloys: A review of recent developments. Journal of Alloys and Compounds, 2012, 520, 11-21.	5.5	152
26	Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1705.	38.1	152
27	Dislocationâ€Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	21.0	148
28	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Transactions of Tianjin University, 2020, 26, 92-103.	6.4	146
29	Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries. Journal of Materials Chemistry A, 2019, 7, 18183-18208.	10.3	139
30	Highly Active and Durable Singleâ€Atom Tungstenâ€Doped NiS _{0.5} Se _{0.5} Nanosheet @ NiS _{0.5} Se _{0.5} Nanorod Heterostructures for Water Splitting. Advanced Materials, 2022, 34, e2107053.	21.0	136
31	Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2021, 14, 1149-1155.	10.4	130
32	Clarifying the Controversial Catalytic Performance of Co(OH) ₂ and Co ₃ O ₄ for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 22694-22703.	8.0	121
33	Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. Journal of Materials Chemistry A, 2018, 6, 8109-8119.	10.3	121
34	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x ≤) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 13675-13684.	8.0	116
35	Bimetallic Metal–Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15662-15669.	8.0	107
36	Generation of Nanoparticle, Atomic luster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 5413-5418.	2.0	106

#	Article	IF	CITATIONS
37	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched Coï₺¿Nï₺¿C Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	11.2	104
38	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Water‧plitting Performance. Small, 2018, 14, e1803666.	10.0	100
39	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-Materiály, 2019, 1, 130-139.	17.3	97
40	Review of Emerging Potassium–Sulfur Batteries. Advanced Materials, 2020, 32, e1908007.	21.0	91
41	Highâ€Temperature Shock Enabled Nanomanufacturing for Energyâ€Related Applications. Advanced Energy Materials, 2020, 10, 2001331.	19.5	86
42	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 4915-4921.	8.0	84
43	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 11060-11068.	10.3	83
44	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie - International Edition, 2020, 59, 18463-18467.	13.8	82
45	Carbonâ€based cathode materials for rechargeable zincâ€air batteries: From current collectors to bifunctional integrated air electrodes. , 2020, 2, 370-386.		82
46	Confined Fe ₂ VO ₄ âŠ,Nitrogenâ€Doped Carbon Nanowires with Internal Void Space for Highâ€Rate and Ultrastable Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1902674.	19.5	81
47	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie - International Edition, 2021, 60, 7602-7606.	13.8	81
48	Atomically Dispersed Selenium Sites on Nitrogenâ€Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	80
49	Electrochemical Oxidation of Chlorine-Doped Co(OH) ₂ Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS Applied Materials & Interfaces, 2018, 10, 796-805.	8.0	79
50	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	27.0	78
51	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni ³⁺ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 23787-23793.	10.3	76
52	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. Advanced Energy Materials, 2019, 9, 1900955.	19.5	72
53	Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia. Journal of Power Sources, 2013, 223, 165-174.	7.8	70
54	Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries. Small, 2018, 14, e1702987.	10.0	68

#	Article	IF	CITATIONS
55	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2106973.	21.0	68
56	Airâ€Assisted Transient Synthesis of Metastable Nickel Oxide Boosting Alkaline Fuel Oxidation Reaction. Advanced Energy Materials, 2020, 10, 2001397.	19.5	66
57	Potassium″on Batteries: Sulfurâ€Grafted Hollow Carbon Spheres for Potassium″on Battery Anodes (Adv.) Tj	ЕТ <u>0</u> 9110).784314 rgE
58	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2021, 33, e2006461.	21.0	63
59	Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457.	10.3	61
60	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Science China Materials, 2020, 63, 249-257.	6.3	59
61	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. Nano-Micro Letters, 2020, 12, 162.	27.0	59
62	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Science China Materials, 2014, 57, 13-25.	6.3	58
63	Engineering the Metal/Oxide Interface of Pd Nanowire@CuO <i>_x</i> Electrocatalysts for Efficient Alcohol Oxidation Reaction. Small, 2020, 16, e1904964.	10.0	58
64	PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale, 2016, 8, 3962-3972.	5.6	55
65	Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Materials, 2019, 21, 69-76.	18.0	53
66	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	4.7	53
67	The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. Electrochemical Energy Reviews, 2022, 5, 187-210.	25.5	51
68	Multiple Twin Boundaryâ€Regulated Metastable Pd for Ethanol Oxidation Reaction. Advanced Energy Materials, 2022, 12, 2103505.	19.5	51
69	Phase Transfer of Mo ₂ C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. Advanced Functional Materials, 2022, 32, .	14.9	51
70	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	19.5	50
71	Millisecond Conversion of Photovoltaic Silicon Waste to Binderâ€Free High Silicon Content Nanowires Electrodes. Advanced Energy Materials, 2021, 11, 2102103.	19.5	48
72	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, 5092-5101.	13.8	45

#	Article	IF	CITATIONS
73	Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Liâ€Rich Oxide Cathodes. Advanced Energy Materials, 2021, 11, 2003479.	19.5	45
74	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Science China Materials, 2019, 62, 1096-1104.	6.3	43
75	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	10.4	43
76	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	21.0	43
77	Waste to wealth: Defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Science China Materials, 2021, 64, 2710-2718.	6.3	41
78	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. ACS Applied Materials & Interfaces, 2017, 9, 18856-18864.	8.0	39
79	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 8115-8123.	8.0	38
80	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Science China Materials, 2018, 61, 697-706.	6.3	37
81	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H ₂ O ₂ production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chemical Communications, 2019, 55, 13279-13282.	4.1	37
82	Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten, 2020, 2, 109-133.	4.8	37
83	Lower temperature fabrication of continuous intermetallic coatings on AZ91D magnesium alloy in molten salts. Journal of Alloys and Compounds, 2010, 504, 377-381.	5.5	36
84	微纳结构èᇿj金属化å•̂物èf½æºè½¬åŒ–电å,¬åŒ–å‰,ç"ç©¶èį›å±•. Science China Materials,	2023, 64,	1- 26 .
85	Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochimica Acta, 2014, 150, 146-150.	5.2	32
86	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 537-551.	3.4	32
87	Investigation of the Environmental Stability of Poly(vinyl alcohol)–KOH Polymer Electrolytes for Flexible Zinc–Air Batteries. Frontiers in Chemistry, 2019, 7, 678.	3.6	32
88	Bimetallic Multiâ€Level Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	10.0	31
89	Recent Progress in Advanced Characterization Methods for Siliconâ€Based Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900158.	8.6	30
90	Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 54833-54841.	8.0	30

#	Article	IF	CITATIONS
91	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn〓air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	6.0	29
92	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 27765-27772.	8.0	28
93	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	3.5	28
94	Nanomanufacturing of RGO NT Hybrid Film for Flexible Aqueous Alâ€Ion Batteries. Small, 2020, 16, e2002856.	10.0	28
95	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. Journal of Materials Science, 2017, 52, 804-814.	3.7	27
96	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	10.3	27
97	Designing Nanoporous Coralâ€Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. Advanced Functional Materials, 2022, 32, .	14.9	27
98	Interdiffusion kinetics of the intermetallic coatings on AZ91D magnesium alloy formed in molten salts at lower temperatures. Journal of Alloys and Compounds, 2014, 610, 173-179.	5.5	26
99	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Fuels, 2021, 35, 6483-6503.	5.1	26
100	Metal chalcogenides: An emerging material for electrocatalysis. APL Materials, 2021, 9, .	5.1	26
101	Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Research, 2022, 15, 3178-3186.	10.4	26
102	Controlled Synthesis of Niâ€Doped MoS ₂ Hybrid Electrode for Synergistically Enhanced Water‣plitting Process. Chemistry - A European Journal, 2020, 26, 4097-4103.	3.3	23
103	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	5.1	23
104	NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. Science China Materials, 2021, 64, 852-860.	6.3	23
105	Dynamic stretching–electroplating metal oated textile for a flexible and stretchable zinc–air battery. , 2022, 4, 867-877.		23
106	Enhanced Electrocatalytic Activities toward the Ethanol Oxidation of Nanoporous Gold Prepared via Solid-Phase Reaction. ACS Applied Energy Materials, 2020, 3, 336-343.	5.1	22
107	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	3.5	21
108	Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects. ACS Applied Materials & Interfaces, 2022, 14, 18431-18438.	8.0	21

#	Article	IF	CITATIONS
109	Metallic-State MoS ₂ Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. ACS Applied Materials & Interfaces, 2021, 13, 19894-19903.	8.0	20
110	Enhanced antibacterial properties of biocompatible titanium <i>via</i> electrochemically deposited Ag/TiO ₂ nanotubes and chitosan–gelatin–Ag–ZnO complex coating. RSC Advances, 2019, 9, 4521-4529.	3.6	19
111	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	14.9	19
112	Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Science China Materials, 2021, 64, 611-620.	6.3	18
113	Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Metals, 2019, 38, 115-121.	7.1	17
114	Fabrication of platinum submonolayer electrodes and their high electrocatalytic activities for ammonia oxidation. Electrochimica Acta, 2015, 177, 30-35.	5.2	15
115	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	5.1	15
116	3D Foam Anode and Hydrogel Electrolyte for Highâ€Performance and Stable Flexible Zinc–Air Battery. ChemistrySelect, 2020, 5, 8305-8310.	1.5	15
117	Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chemical Communications, 2022, 58, 8254-8257.	4.1	15
118	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, 5130-5139.	2.0	14
119	Atomically Dispersed Selenium Sites on Nitrogenâ€Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	14
120	Potassium Polyacrylate-Based Gel Polymer Electrolyte for Practical Zn–Ni Batteries. ACS Applied Materials & Interfaces, 2022, 14, 22847-22857.	8.0	14
121	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. Frontiers in Chemistry, 2020, 8, 579828.	3.6	13
122	Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Transactions of Tianjin University, 2021, 27, 248-268.	6.4	13
123	Building a Library for Catalysts Research Using Highâ€Throughput Approaches. Advanced Functional Materials, 2022, 32, 2107862.	14.9	13
124	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 7312-7317.	2.0	12
125	Controlled Synthesis and Structure Engineering of Transition Metalâ€based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zincâ€Air Battery and Waterâ€Splitting Devices. ChemSusChem, 2021, 14, 1659-1673.	6.8	12
126	Toward Theoretical Capacity and Superhigh Power Density for Potassium–Selenium Batteries via Facilitating Reversible Potassiation Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 6828-6840.	8.0	12

#	Article	IF	CITATIONS
127	Ni-Doped Mo ₂ C Anchored on Graphitized Porous Carbon for Boosting Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 17273-17281.	8.0	12
128	Zincâ€Air Batteries: Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries (Small 43/2018). Small, 2018, 14, 1870200.	10.0	11
129	Electrocatalysis: Ultrafine Pt Nanoparticleâ€Đecorated Pyriteâ€₹ype CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting (Adv. Energy Mater.) Tj ETQq1 1 0).7 8 ,4 3 14 ı	gBT /Overlo
130	Metal Air Batteries: Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870043.	19.5	10
131	Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation. Catalysts, 2019, 9, 4.	3.5	10
132	One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy. Coatings, 2018, 8, 148.	2.6	9
133	Studies on the Electrochemical Stability of Preferentially (100)â€Oriented Pt Prepared through Three Different Methods. ChemElectroChem, 2017, 4, 66-74.	3.4	7
134	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	6.3	6
135	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
136	In-situ multi-deposition process for cobalt-sulfide synthesis with efficient bifunctional catalytic activity. Ferroelectrics, 2018, 523, 119-125.	0.6	5
137	Zinc–Air Batteries: A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier (Adv. Mater. 22/2020). Advanced Materials, 2020, 32, 2070172.	21.0	5
138	Fundamentals of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 1-30.	0.0	4
139	Zinc–Air Batteries: Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries (Adv. Mater. 4/2018). Advanced Materials, 2018, 30, 1870027.	21.0	4
140	Sodiumâ€lon Batteries: 1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€lon Batteries (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970117.	19.5	4
141	A Solutionâ€based Method for Synthesizing Pyriteâ€type Ferrous Metal Sulfide Microspheres with Efficient OER Activity. Chemistry - an Asian Journal, 2020, 15, 2231-2238.	3.3	4
142	Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems. Journal of Electrical Engineering and Technology, 2021, 16, 2497.	2.0	4
143	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. Particle and Particle Systems Characterization, 2022, 39, .	2.3	4
144	Compatibility of Electrolytes with Inactive Components of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 255-274.	0.0	3

#	Article	IF	CITATIONS
145	Zincâ€Air Batteries: Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170243.	21.0	3
146	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025.	3.5	2
147	Methods for producing an easily assembled zinc-air battery. MethodsX, 2020, 7, 100973.	1.6	2
148	Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials, 2022, 15, 1554.	2.9	2
149	Solution process synthesis of morphology-controllable CoSe2 nanocrystals with efficient bifunctional catalytic activity. Ferroelectrics, 2018, 523, 126-133.	0.6	1
150	Electrocatalysis: Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019, 9, 1970100.	19.5	1
151	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1261-1261.	4.7	1
152	Frontispiz: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, .	2.0	1
153	Palladium Particles Modified by Mixed-Frequency Square-Wave Potential Treatment to Enhance Electrocatalytic Performance for Formic Acid Oxidation. Catalysts, 2021, 11, 522.	3.5	1
154	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 506-506.	3.4	0
155	Frontispiece: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
156	Preface to the special issue on diverse applications of tungsten and related metals. Tungsten, 2021, 3, 243-244.	4.8	0
157	Millisecond Conversion of Photovoltaic Silicon Waste to Binderâ€Free High Silicon Content Nanowires Electrodes (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, .	19.5	0
158	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction (Adv. Mater. 2/2022). Advanced Materials, 2022, 34, .	21.0	0