Geert Schmid-Schoenbein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous enteral protease inhibition as a novel treatment for experimental trauma/hemorrhagic shock. European Journal of Trauma and Emergency Surgery, 2022, 48, 1579-1588.	0.8	6
2	Anti-Obesity Effect of Rice Bran Extract on High-Fat Diet-Induced Obese Mice. Preventive Nutrition and Food Science, 2022, 27, 172-179.	0.7	6
3	Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. Journal of Biomechanics, 2021, 120, 110394.	0.9	4
4	Enhanced intestinal permeability and intestinal co-morbidities in heat strain: A review and case for autodigestion. Temperature, 2021, 8, 223-244.	1.7	3
5	Digestive Enzyme Activity and Protein Degradation in Plasma of Heart Failure Patients. Cellular and Molecular Bioengineering, 2021, 14, 583-596.	1.0	3
6	Inhibition of Serine Protease Activity Protects Against High Fat Diet-Induced Inflammation and Insulin Resistance. Scientific Reports, 2020, 10, 1725.	1.6	20
7	Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors. Biomechanics and Modeling in Mechanobiology, 2019, 18, 5-16.	1.4	18
8	A Lifetime Achievement in Bioengineering: Professor Shu Chien. Annals of Biomedical Engineering, 2019, 47, 2147-2150.	1.3	0
9	Pancreatic source of protease activity in the spontaneously hypertensive rat and its reduction during temporary food restriction. Microcirculation, 2019, 26, e12548.	1.0	4
10	Elevated Resting and Postprandial Digestive Proteolytic Activity in Peripheral Blood of Individuals With Type-2 Diabetes Mellitus, With Uncontrolled Cleavage of Insulin Receptors. Journal of the American College of Nutrition, 2019, 38, 485-492.	1.1	4
11	IGF-1 receptor cleavage in hypertension. Hypertension Research, 2018, 41, 406-413.	1.5	10
12	Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. British Journal of Anaesthesia, 2018, 121, 1065-1074.	1.5	37
13	Cleavage of the leptin receptor by matrix metalloproteinase–2 promotes leptin resistance and obesity in mice. Science Translational Medicine, 2018, 10, .	5.8	46
14	Heart period and blood pressure characteristics in splanchnic arterial occlusion shock-induced collapse. Journal of Clinical Monitoring and Computing, 2017, 31, 167-175.	0.7	7
15	Fluid shear-induced cathepsin B release in the control of Mac1-dependent neutrophil adhesion. Journal of Leukocyte Biology, 2017, 102, 117-126.	1.5	7
16	Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock. Experimental Biology and Medicine, 2017, 242, 1462-1470.	1.1	6
17	The autodigestion hypothesis: Proteolytic receptor cleavage in rheological and cardiovascular cell dysfunction1. Biorheology, 2017, 53, 179-191.	1.2	2
18	Proteolytic receptor cleavage in the pathogenesis of blood rheology and co-morbidities in metabolic syndrome. EarlyÂforms of autodigestion. Biorheology, 2016, 52, 337-352.	1.2	9

GEERT SCHMID-SCHOENBEIN

#	Article	IF	CITATIONS
19	Thrombin generation assay in untreated whole human blood. Electrophoresis, 2016, 37, 2248-2256.	1.3	2
20	Can Fishy Odor Be a Risk Factor for Coronary Artery Disease? â^—. Journal of the American College of Cardiology, 2016, 67, 2629-2630.	1.2	1
21	Set up of a protocol for rat plasma peptidomics in hemorrhagic shock model in presence of heparin. EuPA Open Proteomics, 2016, 12, 1-3.	2.5	3
22	Control of overweight and obesity in childhood through education in meal time habits. The â€~good manners for a healthy future' programme. Pediatric Obesity, 2016, 11, 484-490.	1.4	21
23	Is Matrix Metalloproteinase-8 Activity in the Mucosal Barrier a Requirement for Leakage of Cecal Material in Peritonitis?*. Critical Care Medicine, 2016, 44, 854-855.	0.4	4
24	ShockOmics: multiscale approach to the identification of molecular biomarkers in acute heart failure induced by shock. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2016, 24, 9.	1.1	20
25	Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 3072-3084.	3.0	34
26	Transmural Intestinal Wall Permeability in Severe Ischemia after Enteral Protease Inhibition. PLoS ONE, 2014, 9, e96655.	1.1	25
27	Cellular and molecular basis of Venous insufficiency. Vascular Cell, 2014, 6, 24.	0.2	56
28	Cleavage and reduced CD36 ectodomain density on heart and spleen macrophages in the Spontaneously Hypertensive Rat. Microvascular Research, 2014, 95, 131-142.	1.1	9
29	The Autodigestion Hypothesis for Shock and Multi-organ Failure. Annals of Biomedical Engineering, 2014, 42, 405-414.	1.3	26
30	The oxygen free radicals control MMP-9 and transcription factors expression in the spontaneously hypertensive rat. Microvascular Research, 2013, 90, 154-161.	1.1	13
31	Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat. Journal of Leukocyte Biology, 2012, 92, 183-194.	1.5	15
32	An elementary analysis of physiologic shock and multi-organ failure: The Autodigestion Hypothesis. , 2012, 2012, 3114-5.		4
33	Disruption of the Mucosal Barrier During Gut Ischemia Allows Entry of Digestive Enzymes Into the Intestinal Wall. Shock, 2012, 37, 297-305.	1.0	65
34	Nitric oxide (NO) side of lymphatic flow and immune surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3-4.	3.3	47
35	An Emerging Role of Degrading Proteinases in Hypertension and the Metabolic Syndrome: Autodigestion and Receptor Cleavage. Current Hypertension Reports, 2012, 14, 88-96.	1.5	16
36	Mucin Protects against Trypsinâ€mediated Increases in Intestinal Epithelial Permeability. FASEB Journal, 2012, 26, 275.8.	0.2	0

#	Article	IF	CITATIONS
37	Proteolyticallyâ€derived inflammatory peptides from the bowel may circulate systemically in shock. FASEB Journal, 2012, 26, 1132.7.	0.2	0
38	Systematic polymorphism discovery after genome-wide identification of potential susceptibility loci in a hereditary rodent model of human hypertension. Blood Pressure, 2011, 20, 222-231.	0.7	10
39	Acute venous occlusion enhances matrix metalloprotease activity: Implications on endothelial dysfunction. Microvascular Research, 2011, 81, 108-116.	1.1	18
40	Matrix Metalloproteinase Activity Causes VEGFRâ€2 Cleavage and Microvascular Rarefaction in Rat Mesentery. Microcirculation, 2011, 18, 228-237.	1.0	20
41	Proteolytic Cleavage of the Red Blood Cell Clycocalyx in a Genetic Form of Hypertension. Cellular and Molecular Bioengineering, 2011, 4, 678-692.	1.0	18
42	Constitutive Expression and Enzymatic Cleavage of ICAM-1 in the Spontaneously Hypertensive Rat. Journal of Vascular Research, 2011, 48, 386-396.	0.6	19
43	The Autodigestion Hypothesis in Shock and Multi-Organ Failure: Degrading Protease Activity. Boletim Da Sociedade Portuguesa De Hemorreologia E Microcirculação, 2011, 26, 6-15.	0.0	3
44	New hypothesis for insulin resistance in hypertension due to receptor cleavage. Expert Review of Endocrinology and Metabolism, 2010, 5, 149-158.	1.2	22
45	Internalization of Formyl Peptide Receptor in Leukocytes Subject to Fluid Stresses. Cellular and Molecular Bioengineering, 2010, 3, 20-29.	1.0	10
46	Lymphatic/Blood Endothelial Cell Connections at the Capillary Level in Adult Rat Mesentery. Anatomical Record, 2010, 293, spc1-spc1.	0.8	0
47	Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. American Journal of Physiology - Cell Physiology, 2010, 299, C1441-C1449.	2.1	31
48	Enhanced Matrix Metalloproteinase Activity in the Spontaneously Hypertensive Rat: VEGFR-2 Cleavage, Endothelial Apoptosis, and Capillary Rarefaction. Journal of Vascular Research, 2010, 47, 423-431.	0.6	65
49	Matrix metalloproteinases cleave the β ₂ -adrenergic receptor in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H25-H35.	1.5	74
50	<i>Toll-like receptor signaling mechanisms in hostile neutrophils</i> . Focus on "Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury― American Journal of Physiology - Cell Physiology, 2010, 299, C731-C732.	2.1	3
51	Nuclear factor―kappa B expression and matrix metalloproteinase activity in hypertension. FASEB Journal, 2010, 24, 592.1.	0.2	0
52	Matrix Metalloproteinases: Discrete Elevations in Essential Hypertension and Hypertensive End-Stage Renal Disease. Clinical and Experimental Hypertension, 2009, 31, 521-533.	0.5	78
53	Biomechanics: Cell Research and Applications for the Next Decade. Annals of Biomedical Engineering, 2009, 37, 847-859.	1.3	169
54	2008 Landis Award Lecture Inflammation and the Autodigestion Hypothesis. Microcirculation, 2009, 16, 289-306.	1.0	25

#	Article	IF	CITATIONS
55	Blockade of Pancreatic Digestive Proteases in Severe Hemorrhagic Shock Enhances Longâ€ŧerm Survival Rate. FASEB Journal, 2009, 23, 594.13.	0.2	0
56	Proteinase Activity and Receptor Cleavage. Hypertension, 2008, 52, 415-423.	1.3	95
57	Contribution of Leukocytes to Capillary Hemostasis in the Spontaneously Hypertensive Rat. FASEB Journal, 2008, 22, 732.5.	0.2	Ο
58	Enhanced Matrix Metalloproteinase Activity in Microvascular Endothelium of the Spontaneously Hypertensive Rat. FASEB Journal, 2008, 22, 731.5.	0.2	0
59	Microvascular Network Restructuring Associated with MMP Inhibition in Spontaneously Hypertensive Rats. FASEB Journal, 2008, 22, 732.8.	0.2	1
60	Shock survival improved by combined protease and lipase inhibition in the intestinal lumen. FASEB Journal, 2008, 22, .	0.2	0
61	Biomechanical aspects of the auto-digestion theory. MCB Molecular and Cellular Biomechanics, 2008, 5, 83-95.	0.3	7
62	The Primary Valves in the Initial Lymphatics during Inflammation. Lymphatic Research and Biology, 2007, 5, 3-10.	0.5	51
63	A journey with Tony Hugli up the inflammatory cascade towards the auto-digestion hypothesis. International Immunopharmacology, 2007, 7, 1845-1851.	1.7	6
64	Analysis of primary valve structure along initial lymphatic networks in adult rat mesentery. FASEB Journal, 2007, 21, A490.	0.2	0
65	ANALYSIS OF INFLAMMATION. Annual Review of Biomedical Engineering, 2006, 8, 93-151.	5.7	154
66	Decentralized and adaptive control of nonlinear fluid flow networks. International Journal of Control, 2006, 79, 1495-1504.	1.2	25
67	Microvascular Display of Xanthine Oxidase and NADPH Oxidase in the Spontaneously Hypertensive Rat. Microcirculation, 2006, 13, 551-566.	1.0	41
68	Chronotropic Response of Cultured Neonatal Rat Ventricular Myocytes to Short-Term Fluid Shear. Cell Biochemistry and Biophysics, 2006, 46, 113-122.	0.9	27
69	G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. American Journal of Physiology - Cell Physiology, 2006, 290, C1633-C1639.	2.1	100
70	A New Hypothesis for Microvascular Inflammation in Shock and Multiorgan Failure: Selfâ€Ðigestion by Pancreatic Enzymes. Microcirculation, 2005, 12, 71-82.	1.0	46
71	Transport Processes in Biomedical Systems: A Roadmap for Future Research Directions. Annals of Biomedical Engineering, 2005, 33, 1136-1141.	1.3	6
72	Mechanics of Curved Plasma Membrane Vesicles: Resting Shapes, Membrane Curvature, and In-Plane Shear Elasticity. Journal of Biomechanical Engineering, 2005, 127, 229-236.	0.6	14

#	Article	IF	CITATIONS
73	Leukocyte fluid shear response in the presence of glucocorticoid. Journal of Leukocyte Biology, 2004, 75, 664-670.	1.5	24
74	Contribution of Fluid Shear Response in Leukocytes to Hemodynamic Resistance in the Spontaneously Hypertensive Rat. Circulation Research, 2004, 95, 100-108.	2.0	62
75	Enhancement of Glucocorticoid and Mineralocorticoid Receptor Density in the Microcirculation of the Spontaneously Hypertensive Rat. Microcirculation, 2004, 11, 69-78.	1.0	44
76	Pancreatic Trypsin Increases Matrix Metalloproteinase-9 Accumulation and Activation during Acute Intestinal Ischemia-Reperfusion in the Rat. American Journal of Pathology, 2004, 164, 1707-1716.	1.9	79
77	Xanthine oxidase activity in the dexamethasone-induced hypertensive rat. Microvascular Research, 2003, 66, 30-37.	1.1	53
78	The Second Valve System in Lymphatics. Lymphatic Research and Biology, 2003, 1, 25-31.	0.5	87
79	The Inflammatory Aspect of the Microcirculation in Hypertension: Oxidative Stress, Leukocytes/Endothelial Interaction, Apoptosis. Microcirculation, 2002, 9, 259-276.	1.0	128
80	Microvascular Cell Death in Spontaneously Hypertensive Rats During Experimental Inflammation. Microcirculation, 2002, 9, 397-405.	1.0	3
81	Microvascular Cell Death in Spontaneously Hypertensive Rats During Experimental Inflammation. Microcirculation, 2002, 9, 397-405.	1.0	1
82	New Advances in the Understanding of the Pathophysiology of Chronic Venous Insufficiency. Angiology, 2001, 52, S27-S34.	0.8	79
83	Pancreatic Enzymes and Microvascular Cell Activation in Multiorgan Failure. Microcirculation, 2001, 8, 5-14.	1.0	14
84	Microvascular Endothelial Cell Death and Rarefaction in the Glucocorticoid-Induced Hypertensive Rat. Microcirculation, 2001, 8, 129-139.	1.0	51
85	Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB Journal, 2001, 15, 1711-1717.	0.2	151
86	CELL ACTIVATION IN THE CIRCULATION. Advanced Series in Biomechanics, 2001, , 185-216.	0.1	0
87	Pancreatic enzymes and microvascular cell activation in multiorgan failure. Microcirculation, 2001, 8, 5-14.	1.0	3
88	Microvascular endothelial cell death and rarefaction in the glucocorticoid-induced hypertensive rat. Microcirculation, 2001, 8, 129-39.	1.0	30
89	Mechanisms for cell activation and its consequences for biorheology and microcirculation: Multi-organ failure in shock. Biorheology, 2001, 38, 185-201.	1.2	14
90	The Pancreas as a Source of Cardiovascular Cell Activating Factors. Microcirculation, 2000, 7, 183-192.	1.0	49

GEERT SCHMID-SCHOENBEIN

#	Article	IF	CITATIONS
91	Propagation of Viralâ€ 6 ize Particles in Lymph and Blood after Subcutaneous Inoculation. Microcirculation, 2000, 7, 193-200.	1.0	18
92	Microcirculation Supplement: Microcirculation and Chronic Venous Insufficiency. Microcirculation, 2000, 7, S1-S2.	1.0	0
93	Therapeutic Management of Chronic Venous Insufficiency: Microcirculation as a Target. Microcirculation, 2000, 7, S23.	1.0	3
94	Microcirculatory Inflammation in Chronic Venous Insufficiency: Current Status and Future Directions. Microcirculation, 2000, 7, S49.	1.0	15
95	Mechanisms of Parenchymal Cell Death Inâ€Vivo after Microvascular Hemorrhage. Microcirculation, 2000, 7, 1-11.	1.0	5
96	The Inflammatory Reaction During Venous Hypertension in the Rat. Microcirculation, 2000, 7, 41-52.	1.0	46
97	Propagation of Viral-Size Particles in Lymph and Blood after Subcutaneous Inoculation. , 2000, 7, 193.		4
98	The Pancreas as a Source of Cardiovascular Cell Activating Factors. , 2000, 7, 183.		14
99	Chained Vesicles in Vascular Endothelial Cells. Journal of Biomechanical Engineering, 1999, 121, 472-479.	0.6	9
100	Transport of colloidal particles in lymphatics and vasculature after subcutaneous injection. Journal of Applied Physiology, 1999, 86, 1381-1387.	1.2	20
101	A Mechanism of Oxygen Free Radical Production in the Dahl Hypertensive Rat. Microcirculation, 1999, 6, 179-187.	1.0	97
102	Mast Cell Degranulation and Parenchymal Cell Injury in the Rat Mesentery. Microcirculation, 1999, 6, 237-244.	1.0	6
103	Biomechanics of Microcirculatory Blood Perfusion. Annual Review of Biomedical Engineering, 1999, 1, 73-102.	5.7	57
104	A Mechanism of Oxygen Free Radical Production in the Dahl Hypertensive Rat. , 1999, 6, 179.		18
105	A Mechanism of Oxygen Free Radical Production in the Dahl Hypertensive Rat. Microcirculation, 1999, 6, 179-187.	1.0	3
106	Role of xanthine oxidase in hydrogen peroxide production. Free Radical Biology and Medicine, 1998, 25, 720-727.	1.3	77
107	Leukocyte contribution to parenchymal cell death in an experimental model of inflammation. Journal of Leukocyte Biology, 1997, 62, 163-175.	1.5	11
108	Attenuation of Oxygen Free Radical Formation and Tissue Injury During Experimental Inflammation by Pâ€selectin Blockade. Microcirculation, 1997, 4, 349-357.	1.0	32

#	Article	IF	CITATIONS
109	Experimental Antileukocyte Interventions in Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1108-1119.	2.4	148
110	Effects of induced tolerance to bacterial lipopolysaccharide on myocardial infarct size in rats. Cardiovascular Research, 1996, 31, 73-81.	1.8	33
111	Modification of leukocyte adhesion in spontaneously hypertensive rats by adrenal corticosteroids. Journal of Leukocyte Biology, 1995, 57, 20-26.	1.5	53
112	Leukocytes in Capillary Flow. International Journal of Microcirculation, Clinical and Experimental, 1995, 15, 255-264.	0.6	18
113	Biomechanics of skeletal muscle capillaries: Hemodynamic resistance, endothelial distensibility, and pseudopod formation. Annals of Biomedical Engineering, 1995, 23, 226-246.	1.3	86
114	Membrane Model of Endothelial Cells and Leukocytes. A Proposal for the Origin of a Cortical Stress. Journal of Biomechanical Engineering, 1995, 117, 171-178.	0.6	59
115	Characterization of rat LECAM-1 (L-selectin) by the use of monoclonal antibodies and evidence for the presence of soluble LECAM-1 in rat sera. European Journal of Immunology, 1993, 23, 2181-2188.	1.6	87
116	Spontaneous activation of circulating granulocytes in patients with acute myocardial and cerebral diseases. Biorheology, 1992, 29, 549-561.	1.2	21
117	Leukocyte counts and activation in spontaneously hypertensive and normotensive rats Hypertension, 1991, 17, 323-330.	1.3	171
118	Mechanisms causing initial lymphatics to expand and compress to promote lymph flow Archives of Histology and Cytology, 1990, 53, 107-114.	0.2	54
119	Perspectives of leukocyte activation in the microcirculation. Biorheology, 1990, 27, 859-869.	1.2	15
120	Microlymphatics and lymph flow. Physiological Reviews, 1990, 70, 987-1028.	13.1	549
121	Wall structure of arteries and arterioles feeding the spinotrapezius muscle of normotensive and spontaneously hypertensive rats. International Journal of Microcirculation, Clinical and Experimental, 1990, 9, 47-66.	0.6	6
122	Granulocyte activation and capillary obstruction. Monographs on Atherosclerosis, 1990, 15, 150-9.	0.0	5
123	A high precision dual feedback pump for unsteady perfusion of small organs. Annals of Biomedical Engineering, 1989, 17, 269-278.	1.3	5
124	A Theory of Blood Flow in Skeletal Muscle. Journal of Biomechanical Engineering, 1988, 110, 20-26.	0.6	19
125	Cell separation in the buffy coat. Biorheology, 1988, 25, 663-673.	1.2	12
126	Effects of AQA-39 on granulocytes in the microcirculation of rat mesentery. European Heart Journal, 1987, 8, 75-81.	1.0	2

#	Article	IF	CITATIONS
127	Rheology of Leukocytes. Annals of the New York Academy of Sciences, 1987, 516, 333-347.	1.8	43
128	The Interaction between Leukocytes and Endothelium in Vivo. Annals of the New York Academy of Sciences, 1987, 516, 348-361.	1.8	38
129	Leukocyte kinetics in the microcirculation. Biorheology, 1987, 24, 139-151.	1.2	25
130	Granulocytes as active participants in acute myocardial ischemia and infarction. The American Journal of Cardiovascular Pathology, 1987, 1, 15-30.	0.1	51
131	Deformation of leukocytes on a hematological blood film. Biorheology, 1984, 21, 767-781.	1.2	10