Igor V Trushkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168448/publications.pdf

Version: 2024-02-01

159358 197535 2,854 103 30 49 citations g-index h-index papers 143 143 143 1566 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent advances in ring-forming reactions of donor–acceptor cyclopropanes. Mendeleev Communications, 2011, 21, 293-301.	0.6	229
2	Donor–Acceptor Cyclopropanes as Threeâ€Carbon Components in a [4+3] Cycloaddition Reaction with 1,3â€Diphenylisobenzofuran. Angewandte Chemie - International Edition, 2008, 47, 1107-1110.	7.2	156
3	Ring Opening of Donor–Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of Nâ€Heterocycles. Chemistry - A European Journal, 2015, 21, 4975-4987.	1.7	136
4	Cycloaddition to buckminsterfullerene C60: advancements and future prospects. Russian Chemical Bulletin, 2002, 51, 367-443.	0.4	109
5	(3+3)â€Annulation of Donor–Acceptor Cyclopropanes with Diaziridines. Angewandte Chemie - International Edition, 2018, 57, 10338-10342.	7.2	103
6	Donorâ€Acceptor Cyclopropanes in the Synthesis of Carbocycles. Chemical Record, 2019, 19, 2189-2208.	2.9	96
7	Methods for the synthesis of donor-acceptor cyclopropanes. Russian Chemical Reviews, 2018, 87, 201-250.	2.5	82
8	(3 + 3)-Cyclodimerization of Donor–Acceptor Cyclopropanes. Three Routes to Six-Membered Rings. Journal of Organic Chemistry, 2011, 76, 8852-8868.	1.7	71
9	Lewis Acid Triggered Vinylcyclopropane–Cyclopentene Rearrangement. Journal of Organic Chemistry, 2018, 83, 543-560.	1.7	69
10	Lewis Acid Catalyzed Reactions of Donor–Acceptor Cyclopropanes with Anthracenes. European Journal of Organic Chemistry, 2008, 2008, 5329-5335.	1.2	68
11	Lewis Acidâ€Catalyzed Isomerization of 2â€Arylcyclopropaneâ€1,1â€dicarboxylates: A New Efficient Route to 2â€Styrylmalonates. Advanced Synthesis and Catalysis, 2010, 352, 3179-3184.	2.1	66
12	Lewis acid-catalyzed reactions of donor–acceptor cyclopropanes with furan derivatives. Tetrahedron, 2009, 65, 5385-5392.	1.0	60
13	From biomass to medicines. A simple synthesis of indolo[3,2-c]quinolines, antimalarial alkaloid isocryptolepine, and its derivatives. Organic and Biomolecular Chemistry, 2012, 10, 7262.	1.5	60
14	Furan Oxidation Reactions in the Total Synthesis of Natural Products. Synthesis, 2018, 50, 3059-3086.	1.2	55
15	Lewis Acidâ€Catalyzed [3+4] Annulation of 2â€(Heteroaryl)―cyclopropaneâ€1,1â€dicarboxylates with Cyclopentadiene. Advanced Synthesis and Catalysis, 2011, 353, 1125-1134.	2.1	54
16	Duality of Donor–Acceptor Cyclopropane Reactivity as a Threeâ€Carbon Component in Fiveâ€Membered Ring Construction: [3+2] Annulation Versus [3+2] Cycloaddition. Chemistry - A European Journal, 2013, 19, 6586-6590.	1.7	53
17	The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect. European Journal of Medicinal Chemistry, 2009, 44, 1554-1569.	2.6	52
18	From Umpolung to Alternation: Modified Reactivity of Donor–Acceptor Cyclopropanes Towards Nucleophiles in Reaction with Nitroalkanes. Chemistry - A European Journal, 2016, 22, 3692-3696.	1.7	51

#	Article	IF	Citations
19	Furan's Gambit: Electrophileâ€Attackâ€Triggered Sacrifice of Furan Rings for the Intramolecular Construction of Azaheterocycles. European Journal of Organic Chemistry, 2015, 2015, 2999-3016.	1.2	50
20	Furan ring opening–pyrrole ring closure: a new synthetic route to aryl(heteroaryl)-annulated pyrrolo[1,2-a][1,4]diazepines. Organic and Biomolecular Chemistry, 2010, 8, 3316.	1.5	49
21	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie - International Edition, 2021, 60, 7927-7934.	7.2	43
22	[3+2] Cyclodimerization of 2-arylcyclopropane-1,1-diesters. Lewis acid induced reversion of cyclopropane umpolung. Tetrahedron Letters, 2011, 52, 4421-4425.	0.7	41
23	A Simple Route to Polysubstituted Indoles Exploiting Azide Induced Furan Ring Opening. Organic Letters, 2014, 16, 4150-4153.	2.4	40
24	Lewis and BrÃ,nsted Acid Induced (3 + 2)-Annulation of Donor–Acceptor Cyclopropanes to Alkynes: Indene Assembly. Organic Letters, 2015, 17, 770-773.	2.4	40
25	Reaction of Corey Ylide with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones: Tuning of Chemoselectivity toward Dihydrofuran Synthesis. Organic Letters, 2014, 16, 2830-2833.	2.4	39
26	A bioinspired route to indanes and cyclopentannulated hetarenes via (3+2)-cyclodimerization of donor–acceptor cyclopropanes. Chemical Communications, 2013, 49, 11482.	2.2	37
27	Fullerene-based Low Toxic Nanocationite Particles (Porphyrin Adducts of Cyclohexyl Fullerene-C60) to Treat Hypoxia-induced Mitochondrial Dysfunction in Mammalian Heart Muscle. Archives of Medical Research, 2008, 39, 549-559.	1.5	36
28	(3+3)â€Annulation of Donor–Acceptor Cyclopropanes with Diaziridines. Angewandte Chemie, 2018, 130, 10495-10499.	1.6	32
29	Domino Cyclodimerization of Indoleâ€Derived Donor–Acceptor Cyclopropanes: Oneâ€Step Construction of the Pentaleno[1,6â€∢i>a, <i>b</i>)]indole Skeleton. Chemistry - A European Journal, 2011, 17, 11738-11742.	1.7	31
30	Expanding the Reactivity of Donor–Acceptor Cyclopropanes: Synthesis of Benzannulated Five-Membered Heterocycles via Intramolecular Attack of a Pendant Nucleophilic Group. Organic Letters, 2018, 20, 7947-7952.	2.4	31
31	Furan ring opening–indole ring closure: SnCl2-induced reductive transformation of difuryl(2-nitroaryl)methanes into 2-(2-acylvinyl)indoles. Tetrahedron, 2012, 68, 4252-4258.	1.0	30
32	Formal [3 + 2]-Cycloaddition of Donor–Acceptor Cyclopropanes to 1,3-Dienes: Cyclopentane Assembly. Journal of Organic Chemistry, 2015, 80, 12212-12223.	1.7	28
33	Oxidative Furan-to-Indole Rearrangement. Synthesis of 2-(2-Acylvinyl)indoles and Flinderole C Analogues. Organic Letters, 2016, 18, 2192-2195.	2.4	28
34	A Straightforward Approach to Tetrahydroindolo[3,2â€ <i>b</i>]carbazoles and 1â€Indolyltetrahydrocarbazoles through [3+3] Cyclodimerization of Indoleâ€Derived Cyclopropanes. Chemistry - A European Journal, 2016, 22, 1223-1227.	1.7	27
35	Ring Opening of Donor–Acceptor Cyclopropanes with Cyanide Ion and Its Surrogates. Journal of Organic Chemistry, 2020, 85, 1146-1157.	1.7	26
36	Furan Ringâ€Opening/Indole Ringâ€Closure: Pictet–Spenglerâ€Like Reaction of 2â€(<i>>o</i> à€Aminophenyl)fu with Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 920-926.	ıranş 1.2	25

#	Article	IF	Citations
37	Expanding Stereoelectronic Limits of <i>endo</i> - <i>tet</i> Cyclizations: Synthesis of Benz[<i>b</i>]azepines from Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society, 2021, 143, 13952-13961.	6.6	25
38	Furan ring opening–indole ring closure: recyclization of 2-(2-aminophenyl)furans into 2-(2-oxoalkyl)indoles. Tetrahedron, 2012, 68, 619-627.	1.0	22
39	Furan ring opening–pyrrole ring closure. A simple route to 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazin-3-ones. Tetrahedron Letters, 2013, 54, 3974-3976.	0.7	20
40	A General Synthetic Route to Isomeric Pyrrolo $[1,2-\langle i\rangle x\langle i\rangle][1,4]$ diazepinones. Journal of Organic Chemistry, 2018, 83, 11747-11757.	1.7	20
41	Domino Staudinger/ <i>aza</i> â€Wittig/Mannich Reaction: An Approach to Diversity of Di―and Tetrahydropyrrole Scaffolds. Chemistry - A European Journal, 2016, 22, 17967-17971.	1.7	19
42	Synthesis of 1â€Substituted Pyrazolines by Reaction of Donorâ€Acceptor Cyclopropanes with 1,5â€Diazabicyclo[3.1.0]hexanes. European Journal of Organic Chemistry, 2019, 2019, 5475-5485.	1.2	19
43	Synthesis of Indoles by Domino Reaction of 2â€(Tosylamino)benzyl Alcohols with Furfurylamines: Two Opposite Reactivity Modes of the αâ€Carbon of the Furan Ring in One Process. European Journal of Organic Chemistry, 2014, 2014, 2508-2515.	1.2	18
44	Indolylvinyl Ketones: Building Blocks for the Synthesis of Natural Products and Bioactive Compounds. Synthesis, 2019, 51, 787-815.	1.2	18
45	Unusual reactivity of 3-chloro-1-pentafluorosulfanylpropene in nucleophilic substitution reactions. Tetrahedron Letters, 2005, 46, 4777-4779.	0.7	17
46	The effect of an N-substituent on the recyclization of (2-aminoaryl)bis(5-tert-butyl-2-furyl)methanes: synthesis of 3-furylindoles and triketoindoles. Tetrahedron Letters, 2008, 49, 20-24.	0.7	17
47	The Butin reaction. Chemistry of Heterocyclic Compounds, 2016, 52, 973-995.	0.6	17
48	(3+2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Thiocyanate: A Facile and Efficient Synthesis of 2-Amino-4,5-dihydrothiophenes. Synlett, 2021, 32, 901-904.	1.0	16
49	Recyclization of (2-Aminophenyl)bis(5- <i>tert</i> butyl-2-furyl)methanes into Indole Derivatives: Unusual Dependence on Substituent at Nitrogen Atom. Synthesis, 2008, 2008, 2943-2952.	1.2	15
50	Furan Ring Opening - Pyridine Ring Closure: New Route to Quinolines under the Bischler-Napieralski Reaction Conditions. Synthesis, 2011, 2011, 2629-2638.	1.2	15
51	Shortcut Approach to Cyclopenta[b]indoles by [3+2] Cyclodimerization of Indole-Derived Cyclopropanes. Synlett, 2014, 25, 2289-2292.	1.0	15
52	Reaction of dimethyl (S)-2-(p-tolyl)cyclopropane-1,1-dicarboxylate with acetonitrile. Chemistry of Heterocyclic Compounds, 2012, 48, 825-827.	0.6	14
53	Reaction of donor-acceptor cyclopropanes with 1,3-diphenylisobenzofuran. Lewis acid effect on the reaction pathway. Russian Chemical Bulletin, 2013, 62, 2407-2423.	0.4	14
54	Synthesis of the 4,10-Dihydro-3H-pyridazino[1,6-b]isoquinolin-10-one System by a Furan Recyclization Reaction. Synthesis, 2007, 2007, 2208-2214.	1.2	13

#	Article	IF	CITATIONS
55	NEW PORPHYRIN ADDUCT OF FULLERENE- C ₆₀ : A PROMISING NANOTOOL FOR MEDICINAL USE IN THE HEART MUSCLE HYPOXIA CASES. International Journal of Nanoscience, 2008, 07, 113-135.	0.4	13
56	Furan Ring Opening-Pyrrole Ring Closure: Simple Route to 5-Alkyl-2-(aminomethyl)pyrroles. Synthesis, 2010, 2010, 2969-2978.	1.2	13
57	Indoleâ€derived Donorâ€acceptor Cyclopropanes. Israel Journal of Chemistry, 2016, 56, 369-384.	1.0	13
58	Concise approach to pyrrolizino[1,2-b]indoles from indole-derived donor–acceptor cyclopropanes. RSC Advances, 2016, 6, 62014-62018.	1.7	13
59	Simple assembly of polysubstituted pyrazoles and isoxazoles via ring closure–ring opening domino reaction of 3-acyl-4,5-dihydrofurans with hydrazines and hydroxylamine. Organic and Biomolecular Chemistry, 2016, 14, 2905-2915.	1.5	13
60	Donor–Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5- <i>b</i>)azepines Synthesis. Journal of Organic Chemistry, 2021, 86, 12300-12308.	1.7	13
61	Oxidation of Alcohols with Periodic Acid Catalyzed by Fe(â¢)/2-Picolinic Acid. Bulletin of the Korean Chemical Society, 2002, 23, 1331-1332.	1.0	13
62	First synthesis of 2-alkyl- 5-aryl-3,3-bis(methoxycarbonyl)- 4,5-dihydropyrroles. Chemistry of Heterocyclic Compounds, 2010, 46, 120-122.	0.6	12
63	Synthesis of hexahydropyridazin-3-ones by reactions between donor-acceptor cyclopropanes and phenylhydrazine. Chemistry of Heterocyclic Compounds, 2017, 53, 1220-1227.	0.6	12
64	A Simple Synthesis of Densely Substituted Benzofurans by Domino Reaction of 2-Hydroxybenzyl Alcohols with 2-Substituted Furans. Synthesis, 2019, 51, 3747-3757.	1.2	12
65	A Route to (Het)arene-Annulated Pyrrolo[1,2- <i>d</i> 1,4]diazepines via the Expanded Intramolecular Paal–Knorr Reaction: Nitro Group and Furan Ring as Equivalents of Amino Group and 1,4-Diketone. Journal of Organic Chemistry, 2019, 84, 13707-13720.	1.7	12
66	Simple and Convenient Synthesis of 4â€Unsubstitutedâ€3â€(3â€Oxoalkyl)isocoumarins. Synthetic Communications, 2008, 38, 1569-1578.	1.1	11
67	A simple synthesis of benzofurans by acid-catalyzed domino reaction of salicyl alcohols with N-tosylfurfurylamine. Tetrahedron, 2017, 73, 6523-6529.	1.0	11
68	CuBr2-catalyzed alkylation of furans with benzyl alcohols and benzaldehydes. Domino reactions including this alkylation as a key step. Tetrahedron, 2017, 73, 7042-7053.	1.0	11
69	Synthesis of 2,3-diaryl-2,3,4,40°-tetrahydro-50•indeno[1,2-c]pyridazin-5-ones. Chemistry of Heterocyclic Compounds, 2019, 55, 240-245.	0.6	11
70	trans-4-amino-3-hydroxypiperidines. Regio- and stereoselective synthesis. Russian Journal of Organic Chemistry, 2009, 45, 1050-1060.	0.3	10
71	Convenient approach to polyoxygenated dibenzo[<i>c</i> , <i>e</i>]pyrrolo[1,2- <i>a</i>]azepines from donorâ€"acceptor cyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2829-2834.	2.3	10
72	Convenient Synthesis of Functionalized Cyclopropa[c]coumarin-1a-carboxylates. Molecules, 2019, 24, 57.	1.7	10

#	Article	IF	Citations
73	Synthesis of tetracyclic system of 2,4-di(tert-butyl)-6,7-dihydrofuro[2′,3′:3,4]cyclohepta[1,2-b]indole. Journal of Heterocyclic Chemistry, 2011, 48, 684-690.	1.4	9
74	Unusual reactivity of \hat{l}^2 -(3-indolyl)- \hat{l}_{\pm} , \hat{l}^2 -unsaturated ketones. 2-Acetylvinyl group removal by phenylhydrazine hydrochloride. Tetrahedron Letters, 2011, 52, 5255-5258.	0.7	8
7 5	A simple route to \hat{I}^3 -carbolines and indolizino [7,6- b] indoles. Tetrahedron, 2015, 71, 8786-8790.	1.0	8
76	Cubic reaction coordinate diagram in the nucleophilic substitution process. Tetrahedron Letters, 1990, 31, 3199-3200.	0.7	7
77	Facile Synthesis of β-Keto Sulfones Employing Fenton's Reagent in DMSO. Synlett, 2018, 29, 571-575.	1.0	7
78	Cyclopentene Assembly by Microwave-Assisted Domino Reaction of Donor–Acceptor Cyclopropanes with Ketals. Synlett, 2020, 31, 295-299.	1.0	7
79	New domino dimerization of cyclopropylindoles: synthesis of 1,3-bis(indolyl)cyclopentanes. Chemistry of Heterocyclic Compounds, 2015, 51, 936-939.	0.6	6
80	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie, 2021, 133, 8006-8013.	1.6	6
81	4â€(Dimethylamino)Pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Advanced Synthesis and Catalysis, 2022, 364, 2403-2415.	2.1	6
82	Cyclopropyl- and Allyl-substituted Arenes in Reaction with Dinitrogen Tetroxide. Effect of Substrate Oxidation Potential on Reaction Direction. Russian Journal of Organic Chemistry, 2004, 40, 1098-1112.	0.3	5
83	First example of a synthesis of the tetracyclic 2,4-di(tert-butyl)- 6,7-dihydrofuro[2',3':3,4]cyclohepta-[1,2-b]indole system. Chemistry of Heterocyclic Compounds, 2010, 46, 117-119.	0.6	5
84	Copper(II) bromide-catalyzed conjugate addition of furans to \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds. Chemistry of Heterocyclic Compounds, 2017, 53, 1286-1293.	0.6	5
85	Route to pyrrolo[1,2-a]quinoxalines via a furan ring opening-pyrrole ring closure sequence. Tetrahedron Letters, 2020, 61, 151532.	0.7	5
86	Oxidative Rearrangement of 2â€(2â€Aminobenzyl)furans: Synthesis of Functionalized Indoles and Carbazoles. European Journal of Organic Chemistry, 2021, 2021, 1274-1285.	1.2	5
87	Correlation methods for analyzing and predicting reactivities in nucleophilic substitution processes. Russian Chemical Bulletin, 1995, 44, 777-800.	0.4	4
88	Bromination of 4â€Dichloromethylâ€4â€methylcyclohexaâ€2,5â€dienâ€1â€ones. Synthetic Communications, 20 2729-2736.	007 _{.1} 37,	4
89	Extended Corey–Chaykovsky reactions: transformation of 2-hydroxychalcones to benzannulated 2,8-dioxabicyclo[3.2.1]octanes and 2,3-dihydrobenzofurans. Organic Chemistry Frontiers, 2022, 9, 737-744.	2.3	4
90	Acyclic and cyclic forms of the radicals HO4⋠CH3O4⋠and C2H5O4·: ab initio quantum chemical calculations. Russian Chemical Bulletin, 2009, 58, 489-492.	0.4	3

#	Article	IF	CITATIONS
91	Novel route to quinolines via recyclization of furans. Chemistry of Heterocyclic Compounds, 2011, 46, 1539-1541.	0.6	3
92	Acid-catalyzed cascade rearrangement of 4-acetoxy-9-furylnaphtho [2,3-b] furans. Monatshefte $\tilde{\text{FA}}$ /4r Chemie, 2013, 144, 1711-1723.	0.9	3
93	Synthesis of quinolines via acid-catalyzed cyclodehydration of 2-(tosylamino)chalcones. Chemistry of Heterocyclic Compounds, 2016, 52, 1087-1091.	0.6	3
94	Synthesis of (Het)aryl 2-(2-hydroxyaryl)cyclopropyl Ketones. Molecules, 2020, 25, 5748.	1.7	3
95	4b,5,6,9-Tetrahydro-7H-dibenzo[c,e]pyrrolo[1,2-a]azepin-7-one. MolBank, 2019, 2019, M1061.	0.2	2
96	A simple synthesis of 2-{2-[(arylmethylidene)amino]-indazol-3-yl}malonate esters. Chemistry of Heterocyclic Compounds, 2020, 56, 555-561.	0.6	2
97	One-Step Synthesis of Triphenylphosphonium Salts from (Het)arylmethyl Alcohols. Journal of Organic Chemistry, 2021, 86, 9838-9846.	1.7	2
98	Transformation of 3-(Furan-2-yl)-1,3-di(het)arylpropan-1-ones to Prop-2-en-1-ones via Oxidative Furan Dearomatization/2-Ene-1,4,7-triones Cyclization. Molecules, 2021, 26, 2637.	1.7	1
99	Fluorinated Furans and Benzofurans. , 2014, , 181-231.		0
100	Alexander Valerianovich Butin (18.05.1962–1.05.2015). Chemistry of Heterocyclic Compounds, 2015, 51, 393-394.	0.6	0
101	A Straightforward Approach to Tetrahydroindolo[3,2-b]carbazoles and 1-Indolyltetrahydrocarbazoles through [3+3] Cyclodimerization of Indole-Derived Cyclopropanes. Chemistry - A European Journal, 2016, 22, 1185-1185.	1.7	0
102	Donor-acceptor cyclopropanes with nucleophilic group at ortho-position of donor aromatic substituent. AIP Conference Proceedings, 2020, , .	0.3	0
103	Dimethyl 2-{[2-(2-Methoxy-1-methoxycarbonyl-2-oxoethyl)-4.5.7-trimethoxy-3-(2.4.5-trimethoxyphenyl)-2.3-dihydro-1H-inc	lem]2vl]m	eth v l}malon

Dimethyl .03 2-{[2-(2-Methoxy-1-methoxycarbonyl-2-oxoethyl)-4,5,7-trimethoxy-3-(2,4,5-trimethoxyphenyl)-2,3-dihydro-1H-inderol2yl]methyl}maloi MolBank, 2020, 2020, M1107.