Rosanna Piccirillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168211/publications.pdf Version: 2024-02-01

	393982	433756
1,474	19	31
citations	h-index	g-index
31	31	2577
docs citations	times ranked	citing authors
		1,47419citationsh-index3131

#	Article	IF	CITATIONS
1	Apelin Resistance Contributes to Muscle Loss during Cancer Cachexia in Mice. Cancers, 2022, 14, 1814.	1.7	3
2	The p97â€Nploc4 ATPase complex plays a role in muscle atrophy during cancer and amyotrophic lateral sclerosis. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2225-2241.	2.9	7
3	Costameric integrin and sarcoglycan protein levels are altered in a <i>Drosophila</i> model for Limb-girdle muscular dystrophy type 2H. Molecular Biology of the Cell, 2021, 32, 260-273.	0.9	9
4	TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules, 2021, 11, 408.	1.8	12
5	Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells, 2020, 9, 2536.	1.8	23
6	Trabectedin and Lurbinectedin Extend Survival of Mice Bearing C26 Colon Adenocarcinoma, without Affecting Tumor Growth or Cachexia. Cancers, 2020, 12, 2312.	1.7	5
7	Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions. Frontiers in Immunology, 2020, 11, 1122.	2.2	23
8	Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers, 2019, 11, 1541.	1.7	45
9	Exercise-Induced Myokines With Therapeutic Potential for Muscle Wasting. Frontiers in Physiology, 2019, 10, 287.	1.3	90
10	Group I Paks support muscle regeneration and counteract cancerâ€associated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 727-746.	2.9	20
11	Micro-computed tomography for non-invasive evaluation of muscle atrophy in mouse models of disease. PLoS ONE, 2018, 13, e0198089.	1.1	13
12	Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS Nano, 2017, 11, 9413-9423.	7.3	44
13	Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Oncogene, 2016, 35, 6212-6222.	2.6	35
14	The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy. Laboratory Investigation, 2016, 96, 862-871.	1.7	23
15	Inactivating STAT3: bad for tumor, good for muscle. Cell Cycle, 2015, 14, 939-940.	1.3	7
16	Sunitinib prevents cachexia and prolongs survival of mice bearing renal cancer by restraining STAT3 and MuRF-1 activation in muscle. Oncotarget, 2015, 6, 3043-3054.	0.8	38
17	Mechanisms of muscle growth and atrophy in mammals and <i>Drosophila</i> . Developmental Dynamics, 2014, 243, 201-215.	0.8	112
18	Expression of OA1 limits the fusion of a subset of MVBs with lysosomes $\hat{a} \in \hat{a}$ mechanism potentially involved in the initial biogenesis of melanosomes lownal of Cell Science, 2014, 127, 700-700	1.2	2

Rosanna Piccirillo

#	Article	IF	CITATIONS
19	The influence of skeletal muscle on systemic aging and lifespan. Aging Cell, 2013, 12, 943-949.	3.0	179
20	Mechanisms of skeletal muscle aging: insights from <i>Drosophila</i> and mammalian models. DMM Disease Models and Mechanisms, 2013, 6, 1339-52.	1.2	201
21	Expression of OA1 limits the fusion of a subset of MVBs with lysosomes; a mechanism likely involved in the initial biogenesis of melanosomes. Journal of Cell Science, 2013, 126, 5143-52.	1.2	25
22	Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2284-93.	3.3	39
23	Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes. Journal of Biological Chemistry, 2012, 287, 17471-17482.	1.6	25
24	The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteins. EMBO Journal, 2012, 31, 3334-3350.	3.5	78
25	Muscle Wasting in Aged, Sarcopenic Rats Is Associated with Enhanced Activity of the Ubiquitin Proteasome Pathway. Journal of Biological Chemistry, 2010, 285, 39597-39608.	1.6	188
26	Localization to Mature Melanosomes by Virtue of Cytoplasmic Dileucine Motifs Is Required for Human OCA2 Function. Molecular Biology of the Cell, 2009, 20, 1464-1477.	0.9	67
27	The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Human Molecular Genetics, 2008, 17, 3487-3501.	1.4	76
28	The melanosomal/lysosomal protein OA1 has properties of a G protein-coupled receptor. Pigment Cell & Melanoma Research, 2006, 19, 125-135.	4.0	41
29	An unconventional dileucine-based motif and a novel cytosolic motif are required for the lysosomal and melanosomal targeting of OA1. Journal of Cell Science, 2006, 119, 2003-2014.	1.2	40