Eskandar Zand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reliable Target Prediction of Bioactive Molecules Based on Chemical Similarity Without Employing Statistical Methods. Frontiers in Pharmacology, 2019, 10, 835.	3.5	13
2	Assessing Fitness Costs from a Herbicide-Resistance Management Perspective: A Review and Insight. Weed Science, 2019, 67, 137-148.	1.5	26
3	Clodinafop-Propargyl Resistance Genes in Lolium rigidum Guad. Populations Are Associated with Fitness Costs. Agronomy, 2018, 8, 106.	3.0	4
4	Cross-resistance patterns of winter wild oat (Avena ludoviciana) populations to ACCase inhibitor herbicides. Phytoparasitica, 2017, 45, 419-428.	1.2	10
5	Study of Fitness Cost in Three Rigid Ryegrass Populations Susceptible and Resistant to Acetyl-CoA Carboxylase Inhibiting Herbicides. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	7
6	A Review of Herbicide Resistance in Iran. Weed Science, 2016, 64, 551-561.	1.5	26
7	Behavior of Sethoxydim Alone or in Combination with Turnip Oils on Chlorophyll Fluorescence Parameter. Notulae Scientia Biologicae, 2014, 6, 112-118.	0.4	2
8	Photochemical Behavior of Sethoxydim in the Presence of Vegetable Oils. Journal of Agricultural and Food Chemistry, 2014, 62, 6263-6268.	5.2	5
9	Low-voltage electromembrane extraction combined with cyclodextrin modified capillary electrophoresis for the determination of phenoxy acid herbicides in environmental samples. Analytical Methods, 2013, 5, 1548.	2.7	37
10	Agronomic performance, seed quality and nitrogen uptake of Descurainia sophia in response to different nitrogen rates and water regimes. Industrial Crops and Products, 2013, 44, 583-592.	5.2	51
11	Confirmed resistance to aryloxyphenoxypropionate herbicides in <i>Phalaris minor</i> populations in Iran. Weed Biology and Management, 2011, 11, 29-37.	1.4	31
12	Chemical control of weeds in wheat (Triticum aestivum L.) in Iran. Crop Protection, 2010, 29, 1223-1231.	2.1	19
13	Optimizing the performance of diclofopâ€methyl, cycloxydim, and clodinafopâ€propargyl on littleseed canarygrass (<i>Phalaris minor</i>) and wild oat (<i>Avena ludoviciana</i>) control with adjuvants. Weed Biology and Management, 2010, 10, 57-63.	1.4	16
14	Evaluating the release-weighted risk of insecticides under rainy conditions: A case study in Iran. Archives of Agronomy and Soil Science, 2009, 55, 327-343.	2.6	1
15	Increased foliar activity of clodinafopâ€propargyl and/or tribenuronâ€methyl by surfactants and their synergistic action on wild oat (<i>Avena ludoviciana</i>) and wild mustard (<i>Sinapis arvensis</i>). Weed Biology and Management, 2009, 9, 292-299.	1.4	19
16	Municipal solid waste management in Tehran: Current practices, opportunities and challenges. Waste Management, 2008, 28, 929-934.	7.4	97
17	Influence of corn density and planting pattern on the growth of common lambsquarters (Chenopodium album L.). Weed Biology and Management, 2008, 8, 54-63.	1.4	4
18	Control of weed barley species in winter wheat with sulfosulfuron at different rates and times of application. Weed Biology and Management, 2008, 8, 181-190.	1.4	6

Eskandar Zand

#	Article	IF	CITATIONS
19	Study on the efficacy of weed control in wheat (Triticum aestivum L.) with tank mixtures of grass herbicides with broadleaved herbicides. Crop Protection, 2008, 27, 104-111.	2.1	34
20	Weed Community Response to Saffron–Black Zira Intercropping. Weed Science, 2008, 56, 400-407.	1.5	5
21	Herbicide risk assessment during the Wheat Self-sufficiency Project in Iran. Pest Management Science, 2007, 63, 1036-1045.	3.4	19
22	Response of winter wheat (Triticum aestivum L.) and weeds to tank mixtures of 2,4-D plus MCPA with clodinafop propargyl. Weed Biology and Management, 2007, 7, 209-218.	1.4	7
23	Broadleaved weed control in winter wheat (Triticum aestivum L.) with post-emergence herbicides in Iran. Crop Protection, 2007, 26, 746-752.	2.1	31
24	Efficacy evaluation of some dual purpose herbicides to control weeds in maize (Zea mays L.). Crop Protection, 2007, 26, 936-942.	2.1	31
25	Evaluation of some newly registered herbicides for weed control in wheat (Triticum aestivum L.) in Iran. Crop Protection, 2007, 26, 1349-1358.	2.1	40
26	Evaluation of sulfosulfuron for broadleaved and grass weed control in wheat (Triticum aestivum L.) in Iran. Crop Protection, 2007, 26, 1385-1389.	2.1	22
27	Weed control and wheat (Triticum aestivum L.) yield under application of 2,4-D plus carfentrazone-ethyl and florasulam plus flumetsulam: Evaluation of the efficacy. Crop Protection, 2007, 26, 1759-1764.	2.1	16
28	Evaluation of Different Empirical Models of Crop/Weed Competition to Estimate Yield and LAI Losses from Common Lambsquarters (Chenopodium album L.) in Maize (Zea mays L.). Pakistan Journal of Biological Sciences, 2007, 10, 3752-3761.	0.5	2
29	Path analysis of the relationships between seed yield and some morphological and phenological traits in safflower (Carthamus tinctorius L.). Euphytica, 2006, 148, 261-268.	1.2	51