
Anna G Zavarzina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomes of Lichens Solorina crocea and Peltigera canina. Microbiology Resource Announcements, 2022, 11, e0100021.	0.6	Ο
2	The Role of Laccase from Zygomycetous Fungus Mortierella elasson in Humic Acids Degradation. Agronomy, 2021, 11, 2169.	3.0	8
3	Soil organic matter and the problems of its investigation. IOP Conference Series: Earth and Environmental Science, 2021, 862, 012020.	0.3	1
4	Humic Substances: Hypotheses and Reality (a Review). Eurasian Soil Science, 2021, 54, 1826-1854.	1.6	37
5	Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids. PLoS ONE, 2020, 15, e0239005.	2.5	11
6	The Effect of Acetic Acid and Acetate Ions on Sorption–Desorption of a Mixture of Phenolic Acids by Modified Kaolinite. Eurasian Soil Science, 2020, 53, 1046-1055.	1.6	2
7	Humic Acid Transformation by the Fungus Cerrena unicolor Growing on Cellulose and Glucose. Microbiology, 2020, 89, 287-293.	1.2	4
8	Comparison of the Properties of Humic Acids Extracted from Soils by Alkali in the Presence and Absence of Oxygen. Eurasian Soil Science, 2019, 52, 880-891.	1.6	21
9	Waterâ€soluble phenolic metabolites in lichens and their potential role in soil organic matter formation at the preâ€vascular stage. European Journal of Soil Science, 2019, 70, 736-750.	3.9	8
10	Interaction of the Mixture of Phenolic Acids with Modified Kaolinite under Batch and Dynamic Conditions. Eurasian Soil Science, 2018, 51, 938-946.	1.6	6
11	The Role of Ligninolytic Enzymes Laccase and a Versatile Peroxidase of the Whiteâ€Rot Fungus <i>Lentinus tigrinus</i> in Biotransformation of Soil Humic Matter: Comparative In Vivo Study. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2727-2742.	3.0	18
12	Laccase Production and Humic Acids Decomposition by Microscopic Soil Fungi. Microbiology, 2018, 87, 308-316.	1.2	8
13	Lignin phenols derivatives in lichens. Doklady Biochemistry and Biophysics, 2015, 465, 394-397.	0.9	10
14	Oxidoreductases and cellulases in lichens: Possible roles in lichen biology and soil organic matter turnover. Fungal Biology, 2013, 117, 431-438.	2.5	43
15	Water-soluble phenolic compounds in lichens. Microbiology, 2013, 82, 445-452.	1.2	25
16	Humic substances in the early biosphere. Paleontological Journal, 2013, 47, 984-988.	0.5	6
17	Dimeric and monomeric laccases of soil-stabilizing lichen Solorina crocea: Purification, properties and reactions with humic acids. Soil Biology and Biochemistry, 2012, 45, 161-167.	8.8	20
18	Fungal Oxidoreductases and Humification in Forest Soils. Soil Biology, 2010, , 207-228.	0.8	16

ANNA G ZAVARZINA

#	Article	IF	CITATIONS
19	Heterophase Synthesis of Humic Acids in Soils by Immobilized Phenol Oxidases. Soil Biology, 2010, , 187-205.	0.8	4
20	Xylotrophic and mycophilic bacteria in formation of dystrophic waters. Microbiology, 2009, 78, 523-534.	1.2	6
21	Potential of capillary zone electrophoresis for estimation of humate acid-base properties. Journal of Chromatography A, 2008, 1183, 186-191.	3.7	5
22	Soils on hard rocks in the northwest of Russia: Chemical and mineralogical properties, genesis, and classification problems. Eurasian Soil Science, 2008, 41, 363-376.	1.6	11
23	Fractionation of humic acids according to their hydrophobicity, size, and charge-dependent mobility by the salting-out method. Eurasian Soil Science, 2008, 41, 1294-1301.	1.6	15
24	Laccases produced by lichens of the order <i>Peltigerales</i> . FEMS Microbiology Letters, 2007, 275, 46-52.	1.8	31
25	Laccase and tyrosinase activities in lichens. Microbiology, 2006, 75, 546-556.	1.2	42
26	A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances. Eurasian Soil Science, 2006, 39, S48-S53.	1.6	16