Nana Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167689/publications.pdf

Version: 2024-02-01

840119 839053 22 326 11 18 citations h-index g-index papers 23 23 23 345 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. Journal of Applied Physics, $2019,126,126$	1.1	37
2	Recent Progress on Energy-Related Applications of HfO ₂ -Based Ferroelectric and Antiferroelectric Materials. ACS Applied Electronic Materials, 2020, 2, 2301-2317.	2.0	37
3	Ferroelectric yttrium doped hafnium oxide films from all-inorganic aqueous precursor solution. Ceramics International, 2018, 44, 13867-13872.	2.3	32
4	Synthesis and mechanical properties of the epoxy resin composites filled with solâ^'gel derived ZrO2 nanoparticles. Journal of Sol-Gel Science and Technology, 2018, 88, 442-453.	1.1	27
5	Tailoring Surface Chemistry and Morphology of Titanium Nitride Electrode for On-Chip Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 7869-7878.	3.2	27
6	Fluorite-Structured Ferroelectric-/Antiferroelectric-Based Electrostatic Nanocapacitors for Energy Storage Applications. ACS Applied Energy Materials, 2020, 3, 6036-6055.	2.5	27
7	Sputtered titanium nitride films with finely tailored surface activity and porosity for high performance on-chip micro-supercapacitors. Journal of Power Sources, 2021, 489, 229406.	4.0	18
8	Synthesis and tribological properties of high purity Ti 2 SC nanolamellas by microwave hybrid heating. Journal of Alloys and Compounds, 2017, 699, 25-30.	2.8	15
9	DC reactively sputtered TiNx thin films for capacitor electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 10170-10176.	1.1	15
10	Importance of tailoring the thickness of SiO2 interlayer in the observation of ferroelectric characteristics in yttrium doped HfO2 films on silicon. Vacuum, 2021, 183, 109835.	1.6	13
11	TiN Thin Film Electrodes on Textured Silicon Substrates for Supercapacitors. Journal of the Electrochemical Society, 2019, 166, H802-H809.	1.3	11
12	Superior-performance TiN films sputtered for capacitor electrodes. Journal of Materials Science, 2019, 54, 10346-10354.	1.7	11
13	Synthesis of high-purity Ti2SC powder by microwave hybrid heating. Journal of Advanced Ceramics, 2016, 5, 337-343.	8.9	10
14	Optimizing Annealing Process for Ferroelectric Yâ€Doped HfO ₂ Thin Films by Allâ€Inorganic Aqueous Precursor Solution. Advanced Electronic Materials, 2021, 7, 2000585.	2.6	10
15	Ferroelectric properties of pure ZrO2 thin films by chemical solution deposition. Ceramics International, 2021, 47, 16845-16851.	2.3	8
16	DC substrate bias enables preparation of superior-performance TiN electrode films over a wide process window. Materials Research Bulletin, 2019, 119, 110575.	2.7	7
17	Effect of annealing protection atmosphere on the ferroelectric yttrium doped hafnium oxide thin films. Ceramics International, 2020, 46, 22550-22556.	2.3	6
18	Effect of Bias Voltage on Substrate for the Structure and Electrical Properties of Y:HfO ₂ Thin Films Deposited by Reactive Magnetron Coâ€Sputtering. Advanced Electronic Materials, 2021, 7, 2100488.	2.6	5

#	Article	IF	CITATIONS
19	Significant Enhancement in the Power Density of Micro-Supercapacitors by the In Situ Growth of TiN/TiO <i></i> N <i>_y</i> -Laminated Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 3614-3622.	3.2	4
20	Ferroelectricity in hafnium oxide films doped with magnesium by chemical solution deposition. Journal of Applied Physics, 2022, 131 , .	1.1	3
21	Effects of deposition temperature on the properties of sputtered yttrium-doped hafnium oxide thin films. Materials Research Express, 2019, 6, 086325.	0.8	2
22	Effect of the Hf content on the microstructure and ferroelectric properties of HfxZr1â^'xO2 thin films using an all-inorganic aqueous precursor solution. Nanoscale, 2021, 13, 16216-16225.	2.8	0