Daniel Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167563/publications.pdf

Version: 2024-02-01

36	934	17 h-index	29
papers	citations		g-index
36	36	36	856 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	<i>In Vitro</i> Evolution of Specific Phages Infecting the Fish Pathogen <i>Flavobacterium psychrophilum</i> . Phage, 2022, 3, 28-37.	0.8	1
2	Phage-Mediated Control of Flavobacterium psychrophilum in Aquaculture: In vivo Experiments to Compare Delivery Methods. Frontiers in Microbiology, 2021, 12, 628309.	1.5	20
3	Interactions between Rainbow Trout Eyed Eggs and Flavobacterium spp. Using a Bath Challenge Model: Preliminary Evaluation of Bacteriophages as Pathogen Control Agents. Microorganisms, 2021, 9, 971.	1.6	6
4	Comparative Genomic Analyses of Flavobacterium psychrophilum Isolates Reveals New Putative Genetic Determinants of Virulence Traits. Microorganisms, 2021, 9, 1658.	1.6	5
5	Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses, 2020, 12, 730.	1.5	16
6	Bacteriophages as Biocontrol Agents for <i>Flavobacterium psychrophilum</i> Biofilms and Rainbow Trout Infections. Phage, 2020, 1, 198-204.	0.8	5
7	Phenotypic and Genetic Predictors of Pathogenicity and Virulence in Flavobacterium psychrophilum. Frontiers in Microbiology, 2019, 10, 1711.	1.5	37
8	Large Phenotypic and Genetic Diversity of Prophages Induced from the Fish Pathogen Vibrio anguillarum. Viruses, 2019, 11, 983.	1.5	19
9	Diversification of Vibrio anguillarum Driven by the Bacteriophage CHOED. Frontiers in Microbiology, 2019, 10, 1396.	1.5	11
10	Conservation of Small Regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT Encoded by the Pathogenicity Island (VPaI-7) of Pandemic Strains. International Journal of Molecular Sciences, 2019, 20, 2827.	1.8	3
11	Complete Genome Sequence of Vibrio anguillarum Nontailed Bacteriophage NO16. Microbiology Resource Announcements, $2019,8,.$	0.3	8
12	Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen <i>Vibrio anguillarum</i> . FEMS Microbiology Ecology, 2019, 95, .	1.3	40
13	Complete Genome Sequence of Shewanella sp. WE21, a Rare Isolate with Multiple Novel Large Genomic Islands. Genome Announcements, 2018, 6, .	0.8	2
14	Draft Genome Sequences of Six Vibrio diazotrophicus Strains Isolated from Deep Subsurface Sediments of the Baltic Sea. Genome Announcements, 2018, 6, .	0.8	10
15	Bacteriophages in the control of pathogenic vibrios. Electronic Journal of Biotechnology, 2018, 31, 24-33.	1.2	39
16	Genome Sequences of Shewanella baltica and Shewanella morhuae Strains Isolated from the Gastrointestinal Tract of Freshwater Fish. Genome Announcements, 2018, 6, .	0.8	5
17	Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Scientific Reports, 2018, 8, 9973.	1.6	93
18	Exploring the Genomic Traits of Non-toxigenic Vibrio parahaemolyticus Strains Isolated in Southern Chile. Frontiers in Microbiology, 2018, 9, 161.	1.5	37

#	Article	IF	CITATIONS
19	Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics, 2018, 7, 15.	1.5	66
20	Comparative assessment of <i>Vibrio</i> virulence in marine fish larvae. Journal of Fish Diseases, 2017, 40, 1373-1385.	0.9	47
21	Comparative Genome Analyses of <i>Vibrio anguillarum</i> Strains Reveal a Link with Pathogenicity Traits. MSystems, 2017, 2, .	1.7	58
22	Draft Genome Sequence of Chilean Antarctic <i>Pseudomonas</i> sp. Strain K2I15. Genome Announcements, 2017, 5, .	0.8	0
23	Draft Genome Sequence of <i>Bacillus</i> sp. Strain K2I17, Isolated from the Rhizosphere of <i>Deschampsia antarctica</i> Desv. Genome Announcements, 2017, 5, .	0.8	0
24	Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses, 2017, 9, 122.	1.5	43
25	Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum. PLoS ONE, 2016, 11, e0152515.	1.1	41
26	Genomic diversity of bacteriophages infecting the fish pathogen <i>Flavobacterium psychrophilum</i> FEMS Microbiology Letters, 2016, 363, fnw272.	0.7	29
27	Effect of Bacteriophages on the Growth of Flavobacterium psychrophilum and Development of Phage-Resistant Strains. Microbial Ecology, 2016, 71, 845-859.	1.4	24
28	Draft Genome Sequences of the Fish Pathogen Vibrio harveyi Strains VH2 and VH5. Genome Announcements, $2015, 3, \ldots$	0.8	6
29	Draft Genome Sequences of Vibrio alginolyticus Strains V1 and V2, Opportunistic Marine Pathogens. Genome Announcements, 2015, 3, .	0.8	20
30	Draft Genome Sequence of Vibrio parahaemolyticus VH3, Isolated from an Aquaculture Environment in Greece. Genome Announcements, 2015, 3, .	0.8	3
31	Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors. Applied and Environmental Microbiology, 2015, 81, 1157-1167.	1.4	95
32	Complete Genome Sequence of Vibrio anguillarum Phage CHOED Successfully Used for Phage Therapy in Aquaculture. Genome Announcements, 2014, 2, .	0.8	10
33	Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range. Microbial Ecology, 2014, 67, 748-757.	1.4	25
34	Genomic structure of bacteriophage 6H and its distribution as prophage in <i>Flavobacterium psychrophilum</i> strains. FEMS Microbiology Letters, 2014, 351, 51-58.	0.7	37
35	Diversity of <i>Flavobacterium psychrophilum</i> and the potential use of its phages for protection against bacterial cold water disease in salmonids. Journal of Fish Diseases, 2012, 35, 193-201.	0.9	68
36	Functional evaluation of serine 252 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Biochimie, 2009, 91, 295-299.	1.3	5