Takeshi Iwasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167171/publications.pdf

Version: 2024-02-01

57	1,790	21	42
papers	citations	h-index	g-index
59	59	59	1823
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	1
2	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
3	Excited States of Metal-Adsorbed Dimethyl Disulfide: A TDDFT Study with Cluster Model. Journal of Physical Chemistry A, 2022, 126, 4191-4198.	2.5	2
4	Inside Cover: Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt,) Tj Angewandte Chemie - International Edition, 2022, 61, .	ETQq0 0 (13.8	0 rgBT /Overl 0
5	Innentitelbild: Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt,) Tj	j ETQq1 1 2.0	0.784314 rg O
6	Effects of support materials and Ir loading on catalytic N2O decomposition properties. Catalysis Communications, 2021, 149, 106208.	3.3	7
7	Theoretical method for near-field Raman spectroscopy with multipolar Hamiltonian and real-time-TDDFT: Application to on- and off-resonance tip-enhanced Raman spectroscopy. Journal of Chemical Physics, 2021, 154, 024104.	3.0	4
8	Photoluminescence of Doped Superatoms $M@Au < sub > 12 < sub > (M = Ru, Rh, Ir)$ Homoleptically Capped by (Ph $< sub > 2 < sub > (Ph< sub > 2 < sub > (Ph < sub > 2 < sub > 2 < sub > (Ph < sub > 2 < sub > 2 < sub > (Ph < sub > 2 < sub > 2 < sub > 2 < sub > (Ph < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < $	13.7	57
9	Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science, 2021, 373, 95-98.	12.6	47
10	[Ag23Pd2(PPh3)10Cl7]: A new family of synthesizable bi-icosahedral superatomic molecules. Journal of Chemical Physics, 2021, 155, 024302.	3.0	15
11	A comparative study of structural, electronic, and optical properties of thiolated gold clusters with icosahedral vs face-centered cubic cores. Journal of Chemical Physics, 2021, 155, 094304.	3.0	4
12	Barium Oxide Encapsulating Cobalt Nanoparticles Supported on Magnesium Oxide: Active Non-Noble Metal Catalysts for Ammonia Synthesis under Mild Reaction Conditions. ACS Catalysis, 2021, 11, 13050-13061.	11.2	28
13	Structural Characterization of Nickel-Doped Aluminum Oxide Cations by Cryogenic Ion Trap Vibrational Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 9527-9535.	2.5	4
14	Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2020, 26, 7965-7965.	3.3	0
15	Determining and Controlling Cu-Substitution Sites in Thiolate-Protected Gold-Based 25-Atom Alloy Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 22304-22313.	3.1	26
16	N2O decomposition properties of Ru catalysts supported on various oxide materials and SnO2. Scientific Reports, 2020, 10, 21605.	3.3	10
17	Combined computational quantum chemistry and classical electrodynamics approach for surface enhanced infrared absorption spectroscopy. Journal of Chemical Physics, 2020, 152, 164103.	3.0	3
18	Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2020, 26, 8028-8034.	3.3	11

#	Article	IF	CITATIONS
19	Single-molecule resonance Raman effect in a plasmonic nanocavity. Nature Nanotechnology, 2020, 15, 105-110.	31.5	123
20	Ammonia Combustion Properties of Copper Oxides-based Honeycomb and Granular Catalysts. Journal of the Japan Petroleum Institute, 2020, 63, 274-281.	0.6	3
21	Roles of silver nanoclusters in surface-enhanced Raman spectroscopy. Journal of Chemical Physics, 2019, 151, 094102.	3.0	15
22	Structural and Electronic Properties, Isomerization, and NO Dissociation Reactions on Au, Ag, Cu Clusters. Journal of Computer Chemistry Japan, 2019, 18, 64-69.	0.1	2
23	Low-Lying Excited States of hqxcH and Zn–hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission. Inorganic Chemistry, 2019, 58, 4686-4698.	4.0	10
24	Photoluminescence Properties of [Core+ <i>exo</i>]-Type Au ₆ Clusters: Insights into the Effect of Ligand Environments on the Excitation Dynamics. Journal of Physical Chemistry C, 2019, 123, 6934-6939.	3.1	14
25	Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts. Catalysis Communications, 2019, 123, 64-68.	3.3	6
26	Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu ₁₃ . Journal of Physical Chemistry A, 2019, 123, 210-217.	2.5	18
27	First Principles Calculations Toward Understanding SERS of 2,2′â€Bipyridyl Adsorbed on Au, Ag, and Au–Ag Nanoalloy. Journal of Computational Chemistry, 2019, 40, 925-932.	3.3	19
28	Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18–. Journal of Physical Chemistry C, 2018, 122, 4097-4104.	3.1	17
29	Twist of Câ•C Bond Plays a Crucial Role in the Quenching of AIE-Active Tetraphenylethene Derivatives in Solution. Journal of Physical Chemistry C, 2018, 122, 245-251.	3.1	81
30	Supported binary CuO _x –Pt catalysts with high activity and thermal stability for the combustion of NH ₃ as a carbon-free energy source. RSC Advances, 2018, 8, 41491-41498.	3.6	7
31	Spiral Eu(<scp>iii</scp>) coordination polymers with circularly polarized luminescence. Chemical Communications, 2018, 54, 10695-10697.	4.1	47
32	Insights into geometries, stabilities, electronic structures, reactivity descriptors, and magnetic properties of bimetallic Ni m Cu n–m (m  = 1, 2; n  = 3–13) clusters: Comparison with pure clusters. Journal of Computational Chemistry, 2018, 39, 1878-1889.	e cap per	10
33	A designer ligand field for blue-green luminescence of organoeuropium(<scp>ii</scp>) sandwich complexes with cyclononatetraenyl ligands. Chemical Communications, 2017, 53, 6557-6560.	4.1	36
34	Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation. Journal of the American Chemical Society, 2017, 139, 6514-6517.	13.7	139
35	Development of Integrated Dry–Wet Synthesis Method for Metal Encapsulating Silicon Cage Superatoms of M@Si ₁₆ (M = Ti and Ta). Journal of Physical Chemistry C, 2017, 121, 20507-20516.	3.1	57
36	Optical readout of hydrogen storage in films of Au and Pd. Optics Express, 2017, 25, 24081.	3.4	24

#	Article	IF	CITATIONS
37	Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy. Journal of Chemical Physics, 2016, 144, 124116.	3.0	8
38	Multiple-decker and ring sandwich formation of manganese–benzene organometallic cluster anions: Mn _n Bz _n _{\$\frac{1}{2}\$ sub>\$\frac{1}{2}\$ (n = 1–5 and 18). Physical Chemistry Chemical Physics, 2016, 18, 26049-26056.}	2.8	6
39	Heterodimerization via the Covalent Bonding of Ta@Si ₁₆ Nanoclusters and C ₆₀ Molecules. Journal of Physical Chemistry C, 2015, 119, 10962-10968.	3.1	31
40	Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16nanocluster ions. Nanoscale, 2014, 6, 14702-14707.	5.6	61
41	Experimental and theoretical studies of the structural and electronic properties of vanadium–benzene sandwich clusters and their anions: VnBzn0/â^' (n = 1–5) and VnBznâ^'10/â^' (n = 2–5). Journal of Chemical Physics, 2014, 141, 214304.	3.0	4
42	Liquid-Phase Synthesis of Multidecker Organoeuropium Sandwich Complexes and Their Physical Properties. Journal of Physical Chemistry C, 2014, 118, 5896-5907.	3.1	19
43	Physical properties of mononuclear organoeuropium sandwich complexes ligated by cyclooctatetraene and bis(trimethylsilyl)cyclooctatetraene. Chemical Physics Letters, 2014, 595-596, 144-150.	2.6	9
44	Formation and Control of Ultrasharp Metal/Molecule Interfaces by Controlled Immobilization of Sizeâ€Selected Metal Nanoclusters onto Organic Molecular Films. Advanced Functional Materials, 2014, 24, 1202-1210.	14.9	14
45	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>B</mml:mtext></mml:mrow><mml:mrow> /><mml:none></mml:none><mml:mrow></mml:mrow></mml:mrow>: A</mml:msub></mml:mrow>	><.mml:m 2.6	n ₂ 2m
46	Geometric, Electronic, and Optical Properties of Monomer and Assembly of Endohedral Aluminum Superatomic Clusters. Journal of Physical Chemistry C, 2013, 117, 21551-21557.	3.1	16
47	Electronic and Optical Properties of Vertex-Sharing Homo- and Hetero-Biicosahedral Gold Clusters. Journal of Physical Chemistry C, 2013, 117, 24586-24591.	3.1	19
48	Experimental and theoretical studies on the electronic properties of vanadium-benzene sandwich cluster anions, $V < i > n < i > 12$ ($i > n < i > 12$). Journal of Chemical Physics, 2012, 137, 224305.	3.0	21
49	Geometric, Electronic, and Optical Properties of a Superatomic Heterodimer and Trimer: Sc@Si ₁₆ â€"V@Si ₁₆ and Sc@Si ₁₆ â€"Ti@Si ₁₆ â€"V@Si ₁₆ . Journal of Physical Chemistry C, 2012, 116. 14071-14077.	3.1	62
50	Theoretical Investigation of a Titanium–Aniline Complex with and without an Alkyl Chain. Journal of Physical Chemistry C, 2011, 115, 16574-16582.	3.1	5
51	Near-field-induced optical force on a metal particle and C60: Real-time and real-space electron dynamics simulation. Physical Review A, 2010, 82, .	2.5	3
52	Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Physical Chemistry Chemical Physics, 2010, 12, 6219.	2.8	297
53	Nonuniform light-matter interaction theory for near-field-induced electron dynamics. Physical Review A, 2009, 80, .	2.5	29
54	Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Structures. Journal of Physical Chemistry C, 2007, 111, 14279-14282.	3.1	110

TAKESHI IWASA

#	Article	IF	CITATIONS
55	Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster [Au25(SCH3)18]+. Journal of Physical Chemistry C, 2007, 111, 45-49.	3.1	101
56	Thiolate-Induced Structural Reconstruction of Gold Clusters Probed by197Au Mössbauer Spectroscopy. Journal of the American Chemical Society, 2007, 129, 7230-7231.	13.7	34
57	Gold-thiolate core-in-cage cluster Au25(SCH3)18 shows localized spins in charged states. Chemical Physics Letters, 2007, 441, 268-272.	2.6	34