Ludek Stratil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3166313/publications.pdf

Version: 2024-02-01

30	326	11	17
papers	citations	h-index	g-index
30	30	30	428
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Influence of microstructure on impact properties of 9–18%Cr ODS steels for fusion/fission applications. Journal of Nuclear Materials, 2011, 411, 112-118.	2.7	42
2	Numerical analysis of twin thickening process in magnesium alloys. Acta Materialia, 2017, 124, 9-16.	7.9	35
3	Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals, 2018, 8, 1079.	2.3	29
4	Strengthening mechanisms of different oxide particles in 9Cr ODS steel at high temperatures. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 112-119.	5 . 6	26
5	Numerical analysis of twin-precipitate interactions in magnesium alloys. Acta Materialia, 2021, 202, 80-87.	7.9	21
6	Microstructure and impact properties of ferritic ODS ODM401 (14%Cr-ODS of MA957 type). Journal of Nuclear Materials, 2011, 417, 241-244.	2.7	18
7	Selective Laser Sintering as Manufacturing Process for the Realization of Complex Nuclear Fusion and High Heat Flux Components. Fusion Science and Technology, 2017, 72, 667-672.	1.1	16
8	The Influence of Aluminum Content on Oxidation Resistance of New-Generation ODS Alloy at 1200 $\hat{A}^{\circ}C$. Metals, 2020, 10, 1478.	2.3	15
9	High temperature deformation mechanisms in the 14% Cr ODS alloy. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 34-39.	5.6	14
10	Comparison of microstructural properties and Charpy impact behaviour between different plates of the Eurofer97 steel and effect of isothermal ageing. Journal of Nuclear Materials, 2011, 416, 311-317.	2.7	13
11	Fracture toughness of a lamellar orientation-controlled TiAl-based alloy processed by either one-step or two-step compression at high temperature. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 303-310.	5.6	12
12	Twinning in CoCrFeNiMn high entropy alloy induced by nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139297.	5.6	12
13	Deformation and fracture behavior of the P91 martensitic steel at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 1-6.	5.6	9
14	Survey of oxide candidate for advanced 9%, 14% and 17%Cr ODS steels for fusion applications. Fusion Engineering and Design, 2017, 124, 1028-1032.	1.9	9
15	Advances in Additive Manufacturing of fusion materials. Fusion Engineering and Design, 2021, 167, 112309.	1.9	9
16	Evaluation of conservative and innovative manufacturing routes for gas cooled Test Blanket Module and Breeding Blanket First Walls. Fusion Engineering and Design, 2019, 146, 2140-2143.	1.9	8
17	Fracture behavior of the ODS steels prepared by internal oxidation. Fusion Engineering and Design, 2017, 124, 1108-1111.	1.9	7
18	Numerical study of stress distribution and size effect during AZ31 nanoindentation. Computational Materials Science, 2017, 126, 393-399.	3.0	6

#	Article	IF	CITATIONS
19	Crack Resistance Characterization in TiAl Intermetallics with Enhanced Toughness. Key Engineering Materials, 2017, 741, 13-18.	0.4	5
20	Modeling of Ductile Tearing for RAFM Steel Eurofer97., 2014, 3, 1155-1160.		4
21	Microstructure evolution and creep strength of new-generation oxide dispersion strengthened alloys with high volume fraction of nano-oxides. Procedia Structural Integrity, 2019, 17, 427-433.	0.8	4
22	Development of advanced Fe–Al–O ODS alloy microstructure and properties due to heat treatment. Journal of Materials Research, 2020, 35, 2789-2797.	2.6	4
23	Modelling of the stiffness evolution of truss core structures damaged by plastic buckling. Finite Elements in Analysis and Design, 2015, 100, 1-11.	3.2	3
24	New Generation of ODS Alloys. Key Engineering Materials, 0, 810, 113-118.	0.4	2
25	The Application of Miniaturized Three-Point-Bend Specimens for Determination of the Reference Temperature of JRQ Steel., 2015,,.		1
26	The Application of Miniaturized Three-Point-Bend Specimens for Determination of the Reference Temperature of A533 Cl.1 Steel. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.6	1
27	DUCTILE DAMAGE IDENTIFICATION AND TENSILE NOTCH EFFECT FOR EUROFER97 STEEL. Acta Metallurgica Slovaca - Conference, 2013, 3, .	0.2	1
28	The Prediction of Size Effect on J-R Curve for Eurofer97 Steel by Simplified Mechanical Model. , 2015, , .		0
29	The Effect of Specimen Size for the P91 Steel at Elevated and High Temperatures. , 2017, , .		0
30	The Size Effect on J-R Curve for Construction Steels and its Prediction by Simplified Mechanical Model. , $2018, , .$		0