Payam Zarrintaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3166229/publications.pdf

Version: 2024-02-01

57719 79644 6,278 135 44 73 citations h-index g-index papers 136 136 136 5044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrically conductive carbonâ€based (bio)â€nanomaterials for cardiac tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	3.9	29
2	Green products from herbal medicine wastes by subcritical water treatment. Journal of Hazardous Materials, 2022, 424, 127294.	6.5	26
3	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	5.1	41
4	Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioengineering and Translational Medicine, 2022, 7, e10261.	3.9	29
5	Human Organsâ€onâ€Chips: A Review of the Stateâ€ofâ€theâ€Art, Current Prospects, and Future Challenges. Advanced Biology, 2022, 6, e2000526.	1.4	21
6	Chitosan-based inks for 3D printing and bioprinting. Green Chemistry, 2022, 24, 62-101.	4.6	76
7	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.	5.1	22
8	Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers, 2022, 14, 1259.	2.0	90
9	Preparation and characterization of TiO ₂ â€coated polymerization of methyl methacrylate (PMMA) for biomedical applications: In vitro study. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	3
10	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	2.3	26
11	Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1555-1594.	1.9	9
12	Polydopamine Biomaterials for Skin Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 2196-2219.	2.6	26
13	Synthesis of nanoparticles using microorganisms and their applications: a review. Environmental Chemistry Letters, 2022, 20, 3153-3197.	8.3	33
14	Synthesis of Cost-Effective Hierarchical MFI-Type Mesoporous Zeolite: Introducing Diatomite as Silica Source. Silicon, 2021, 13, 3461-3472.	1.8	12
15	Polyhedral oligomeric silsesquioxane/epoxy coatings: a review. Surface Innovations, 2021, 9, 3-16.	1.4	35
16	Correlation between surface topological defects and fracture mechanism of \hat{l}^3 -graphyne-like boron nitride nanosheets. Computational Materials Science, 2021, 188, 110152.	1.4	13
17	Magnetic nanoparticles in cancer therapy. , 2021, , 425-445.		1
18	Ionically Gelled Polysaccharide-Based Interpenetrating Polymer Network Systems for Drug Delivery. Gels Horizons: From Science To Smart Materials, 2021, , 121-133.	0.3	6

#	Article	IF	Citations
19	Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function. Soft Matter, 2021, 17, 5349-5361.	1.2	16
20	Nanocomposite biomaterials made by 3D printing: Achievements and challenges., 2021,, 675-685.		3
21	Ionically Gelled Carboxymethyl Polysaccharides for Drug Delivery. Gels Horizons: From Science To Smart Materials, 2021, , 93-103.	0.3	6
22	Synthesis and characterization of chitosan pyridyl imine palladium (CPIP) complex as green catalyst for organic transformations. Chemical Papers, 2021, 75, 2835-2850.	1.0	7
23	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	1.7	30
24	Zwitterionic poly(carboxybetaine) microgels for enzyme (chymotrypsin) covalent immobilization with extended stability and activity. Journal of Applied Polymer Science, 2021, 138, 50545.	1.3	11
25	Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine, 2021, Volume 16, 1837-1847.	3.3	20
26	Elastomeric and Plastomeric Materials. , 2021, , 193-207.		1
27	COVID-19: insights into virus–receptor interactions. Molecular Biomedicine, 2021, 2, 10.	1.7	8
28	Promoting motor functions in a spinal cord injury model of rats using transplantation of differentiated human olfactory stem cells: A step towards future therapy. Behavioural Brain Research, 2021, 405, 113205.	1.2	9
29	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	2.3	78
30	Development of a multifunctional system based on CoFe ₂ O ₄ @polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology, 2021, 32, 305101.	1.3	24
31	A Green Composite Based on Gelatin/Agarose/Zeolite as a Potential Scaffold for Tissue Engineering Applications. Journal of Composites Science, 2021, 5, 125.	1.4	17
32	α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. International Journal of Nanomedicine, 2021, Volume 16, 4277-4288.	3.3	9
33	Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Engineering - Part A, 2021, 27, 821-843.	1.6	32
34	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	3.6	97
35	Fracture fingerprint of polycrystalline C3N nanosheets: Theoretical basis. Journal of Molecular Graphics and Modelling, 2021, 106, 107899.	1.3	16
36	Editorial: Bioengineered Nanoparticles in Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 706277.	1.6	2

#	Article	IF	Citations
37	Synthesis, characterization and performance enhancement of dry polyaniline-coated neuroelectrodes for electroencephalography measurement. Current Applied Physics, 2021, 27, 43-50.	1.1	9
38	Adsorption onto zeolites: molecular perspective. Chemical Papers, 2021, 75, 6217-6239.	1.0	6
39	Advanced Delivery Systems Based on Lysine or Lysine Polymers. Molecular Pharmaceutics, 2021, 18, 3652-3670.	2.3	26
40	Lanthanide complexes as anticancer agents: A review. Polyhedron, 2021, 207, 115387.	1.0	29
41	Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. Advances in Experimental Medicine and Biology, 2021, , 1.	0.8	11
42	In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling. Nanomaterials, 2021, 11, 3078.	1.9	15
43	Propane Dehydrogenation Reaction in a High-Pressure Zeolite Membrane Reactor. Energy & Energy & 2021, 35, 19362-19373.	2.5	5
44	Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Progress in Organic Coatings, 2020, 138, 105355.	1.9	19
45	Application of compatibilized polymer blends in biomedical fields. , 2020, , 511-537.		38
46	Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol. International Journal of Biological Macromolecules, 2020, 147, 160-169.	3.6	75
47	Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: A critical review. Food Packaging and Shelf Life, 2020, 23, 100429.	3. 3	93
48	Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 2020, 10, 871.	1.2	13
49	Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. Journal of Water Process Engineering, 2020, 38, 101652.	2.6	47
50	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	4.8	134
51	Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega, 2020, 5, 32051-32058.	1.6	21
52	Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. Materials Science and Engineering C, 2020, 117, 111328.	3.8	39
53	Effect of Nickel Doping on the Cure Kinetics of Epoxy/Fe3O4 Nanocomposites. Journal of Composites Science, 2020, 4, 102.	1.4	3
54	Thermal Analysis of Crosslinking Reactions in Epoxy Nanocomposites Containing Polyvinyl Chloride (PVC)-Functionalized Nickel-Doped Nano-Fe3O4. Journal of Composites Science, 2020, 4, 107.	1.4	2

#	Article	IF	CITATIONS
55	Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomaterials Science and Engineering, 2020, 6, 5096-5109.	2.6	48
56	Biomaterials in Valvular Heart Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 529244.	2.0	20
57	Conductive biomaterials as nerve conduits: Recent advances and future challenges. Applied Materials Today, 2020, 20, 100784.	2.3	45
58	Zeolite in tissue engineering: Opportunities and challenges. MedComm, 2020, 1, 5-34.	3.1	51
59	Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia, 2020, 110, 37-67.	4.1	188
60	Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 2020, 312, 113447.	2.3	104
61	Electroactive poly (p-phenylene sulfide)/r-graphene oxide/chitosan as a novel potential candidate for tissue engineering. International Journal of Biological Macromolecules, 2020, 154, 18-24.	3.6	51
62	Block copolymers for nanoscale drug and gene delivery. , 2020, , 181-200.		10
63	Zeolites for theranostic applications. Journal of Materials Chemistry B, 2020, 8, 5992-6012.	2.9	45
64	Nanotechnology-based biosensors in drug delivery. , 2020, , 767-779.		9
65	Controlled/localized release and nanotechnology. , 2020, , 27-36.		1
66	Protein and peptide-based delivery systems. , 2020, , 145-161.		7
67	Nanoemulsions for intravenous drug delivery. , 2020, , 581-601.		4
68	From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydrate Research, 2020, 489, 107930.	1.1	55
69	Piezoelectric Performance of Microcellular Polypropylene Foams Fabricated Using Foam Injection Molding as a Potential Scaffold for Bone Tissue Engineering. Journal of Macromolecular Science - Physics, 2020, 59, 376-389.	0.4	19
70	Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today, 2020, 25, 642-656.	3.2	113
71	Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. Journal of Alloys and Compounds, 2020, 828, 154329.	2.8	40
72	NaA zeolite-coated meshes with tunable hydrophilicity for oil-water separation. Separation and Purification Technology, 2020, 240, 116630.	3.9	48

#	Article	IF	Citations
73	Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface. Heliyon, 2020, 6, e03798.	1.4	33
74	Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chemical Engineering Journal, 2020, 396, 125196.	6.6	103
75	Whole Tooth Engineering. , 2020, , 443-462.		3
76	Polyaniline-Graphene Nanocomposite Based Supercapacitors. , 2020, , .		1
77	Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers, 2020, 12, 1150.	2.0	120
78	Hopes Beyond PET Recycling: Environmentally Clean and Engineeringly Applicable. Journal of Polymers and the Environment, 2019, 27, 2490-2508.	2.4	11
79	Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydrate Polymers, 2019, 224, 115161.	5.1	109
80	Nonisothermal cure kinetics of epoxy/Zn Fe3-O4 nanocomposites. Progress in Organic Coatings, 2019, 136, 105290.	1.9	23
81	Synthetic route of polyaniline (I): Conventional oxidative polymerization., 2019,, 17-41.		4
82	PANI-based nanostructures. , 2019, , 121-130.		4
83	Polyaniline/metal oxides nanocomposites. , 2019, , 131-141.		9
84	PANI-CNT nanocomposites., 2019,, 143-163.		9
85	Polyaniline/graphene-based nanocomposites. , 2019, , 165-175.		7
86	Application of polyaniline and its derivatives. , 2019, , 259-272.		17
87	Synthetic route of polyaniline (IV): Irradiation path., 2019,, 91-103.		4
88	Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110549.	2.5	74
89	Experimental procedures for assessing electrical and thermal conductivity of polyaniline. , 2019, , 227-258.		3
90	The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber. Journal of Polymers and the Environment, 2019, 27, 2478-2489.	2.4	31

#	Article	IF	Citations
91	Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules, 2019, 9, 448.	1.8	142
92	Curing epoxy with electrochemically synthesized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105245.	1.9	29
93	Impression materials for dental prosthesis. , 2019, , 197-215.		4
94	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	2.6	206
95	Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon, 2019, 5, e01527.	1.4	49
96	Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Progress in Organic Coatings, 2019, 131, 389-396.	1.9	70
97	Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 2019, 115, 251-267.	2.6	71
98	Tripleâ€faced polypropylene: Fire retardant, thermally stable, and antioxidative. Journal of Vinyl and Additive Technology, 2019, 25, 366-376.	1.8	13
99	Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Materials Science and Engineering C, 2019, 101, 243-253.	3.8	85
100	Towards advanced flame retardant organic coatings: Expecting a new function from polyaniline. Progress in Organic Coatings, 2019, 130, 144-148.	1.9	33
101	Curing epoxy with polyethylene glycol (PEG) surface-functionalized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105283.	1.9	20
102	Niobium-Treated Titanium Implants with Improved Cellular and Molecular Activities at the Tissue–Implant Interface. Materials, 2019, 12, 3861.	1.3	24
103	Engineering the niche for hair regeneration $\hat{a}\in$ "A critical review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 70-85.	1.7	32
104	Sustained delivery of olanzapine from sunflower oilâ€based polyolâ€urethane nanoparticles synthesised through a cyclic carbonate ringâ€opening reaction. IET Nanobiotechnology, 2019, 13, 703-711.	1.9	12
105	Chitosan in Biomedical Engineering: A Critical Review. Current Stem Cell Research and Therapy, 2019, 14, 93-116.	0.6	165
106	Theranostic Platforms Proposed for Cancerous Stem Cells: A Review. Current Stem Cell Research and Therapy, 2019, 14, 137-145.	0.6	31
107	Diamond-like carbon-deposited films: a new class of biocorrosion protective coatings. Surface Innovations, 2018, 6, 266-276.	1.4	46
108	Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomaterialia, 2018, 72, 16-34.	4.1	119

#	Article	IF	Citations
109	Crystallization kinetics study of dynamically vulcanized PA6/NBR/HNTs nanocomposites by nonisothermal differential scanning calorimetry. Journal of Applied Polymer Science, 2018, 135, 46488.	1.3	20
110	Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 2018, 187, 66-84.	5.1	454
111	A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. Journal of Colloid and Interface Science, 2018, 516, 57-66.	5.0	92
112	Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 2018, 120, 100-109.	1.9	83
113	An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 171-182.	1.9	41
114	Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 194-202.	1.9	83
115	Diamond-like carbon thin films prepared by pulsed-DC PE-CVD for biomedical applications. Surface Innovations, 2018, 6, 167-175.	1.4	58
116	Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. Progress in Organic Coatings, 2018, 114, 233-243.	1.9	135
117	Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Progress in Organic Coatings, 2018, 115, 143-150.	1.9	99
118	Poloxamer-based stimuli-responsive biomaterials. Materials Today: Proceedings, 2018, 5, 15516-15523.	0.9	54
119	Zirconium-based hybrid coatings: A versatile strategy for biomedical engineering applications. Materials Today: Proceedings, 2018, 5, 15524-15531.	0.9	16
120	Polyaniline in retrospect and prospect. Materials Today: Proceedings, 2018, 5, 15852-15860.	0.9	39
121	Zeolite-based catalysts for exergy efficiency enhancement: The insights gained from nanotechnology. Materials Today: Proceedings, 2018, 5, 15868-15876.	0.9	18
122	Photosensitizers in medicine: Does nanotechnology make a difference?. Materials Today: Proceedings, 2018, 5, 15836-15844.	0.9	15
123	Thermally stable antibacterial wool fabrics surface-decorated by TiON and TiON/Cu thin films. Surface Innovations, 2018, 6, 258-265.	1.4	24
124	Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential. Materials Chemistry and Physics, 2018, 220, 374-382.	2.0	26
125	Biomaterials selection for neuroprosthetics. Current Opinion in Biomedical Engineering, 2018, 6, 99-109.	1.8	53
126	A new direction in design of bioâ€based flame retardants for poly(lactic acid). Fire and Materials, 2018, 42, 914-924.	0.9	45

#	Article	IF	CITATIONS
127	Skin care and rejuvenation by cosmeceutical facial mask. Journal of Cosmetic Dermatology, 2018, 17, 693-702.	0.8	95
128	Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships. Surface and Coatings Technology, 2018, 349, 251-259.	2.2	56
129	A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1617-1638.	1.9	108
130	Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessments. Progress in Organic Coatings, 2017, 113, 126-135.	1.9	76
131	Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release, 2017, 262, 317-328.	4.8	104
132	A Novel Electroactive Agarose-Aniline Pentamer Platform as a Potential Candidate for Neural Tissue Engineering. Scientific Reports, 2017, 7, 17187.	1.6	133
133	Tissue engineering; strategies, tissues, and biomaterials. Biotechnology and Genetic Engineering Reviews, 2017, 33, 144-172.	2.4	133
134	Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 2017, 12, 2403-2422.	1.7	160
135	Bio - Conductive Scaffold Based on Agarose - Polyaniline for Tissue Engineering. Journal of Skin and Stem Cell, 2017, In Press, .	0.1	9