Aik Chong Lua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3166181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial ultrafiltration membrane with silver nanoparticle impregnation by interfacial polymerization for ballast water. Journal of Polymer Science, 2021, 59, 2295-2308.	2.0	11
2	Synthesis of electroless Ni catalyst supported on <scp>SBA</scp> â€15 for hydrogen and carbon production by catalytic decomposition of methane. International Journal of Energy Research, 2021, 45, 2810-2823.	2.2	6
3	A detailed study of pyrolysis conditions on the production of steam-activated carbon derived from oil-palm shell and its application in phenol adsorption. Biomass Conversion and Biorefinery, 2020, 10, 523-533.	2.9	30
4	Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst. Chemical Engineering Journal, 2020, 389, 124366.	6.6	28
5	Deactivation of bimetallic nickel–copper alloy catalysts in thermocatalytic decomposition of methane. Catalysis Science and Technology, 2018, 8, 3853-3862.	2.1	30
6	Ternary Platinum–Copper–Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 3464-3472.	4.0	93
7	A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. Journal of Colloid and Interface Science, 2016, 462, 48-55.	5.0	24
8	Sol–gel synthesis of titanium oxide supported nickel catalysts for hydrogen and carbon production by methane decomposition. Journal of Power Sources, 2015, 280, 467-475.	4.0	45
9	Polyol synthesis of nickel–copper based catalysts for hydrogen production by methane decomposition. International Journal of Hydrogen Energy, 2015, 40, 311-321.	3.8	43
10	Methane decomposition using Ni–Cu alloy nano-particle catalysts and catalyst deactivation studies. Chemical Engineering Journal, 2015, 262, 1077-1089.	6.6	59
11	Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Applied Catalysis B: Environmental, 2015, 164, 61-69.	10.8	160
12	Deactivation and kinetic studies of unsupported Ni and Ni–Co–Cu alloy catalysts used for hydrogen production by methane decomposition. Chemical Engineering Journal, 2014, 243, 79-91.	6.6	55
13	Sol–gel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition. RSC Advances, 2014, 4, 42159-42167.	1.7	27
14	Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles. Applied Catalysis B: Environmental, 2014, 156-157, 84-93.	10.8	78
15	Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. Journal of Applied Polymer Science, 2013, 128, 4058-4066.	1.3	21
16	Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. AICHE Journal, 2013, 59, 4715-4726.	1.8	30
17	Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. Journal of Membrane Science, 2013, 429, 155-167.	4.1	28
18	Decomposition of methane over unsupported porous nickel and alloy catalyst. Applied Catalysis B: Environmental, 2013, 132-133, 469-478.	10.8	102

#	Article	IF	CITATIONS
19	Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chemical Engineering Journal, 2013, 220, 441-451.	6.6	71
20	A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Scientific Reports, 2013, 3, 3037.	1.6	106
21	Hydrogen Production by Thermocatalytic Methane Decomposition. Heat Transfer Engineering, 2013, 34, 896-903.	1.2	24
22	Development of Metallic Nickel Nanoparticle Catalyst for the Decomposition of Methane into Hydrogen and Carbon Nanofibers. Journal of Physical Chemistry C, 2012, 116, 26765-26775.	1.5	58
23	Preparation and characterization of mixed matrix membranes based on poly(vinylidene fluoride) and zeolite 4A for gas separation. Polymer Engineering and Science, 2012, 52, 2106-2113.	1.5	21
24	Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation. Chemical Engineering Journal, 2012, 188, 199-209.	6.6	64
25	Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal, 2012, 192, 201-210.	6.6	113
26	Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide. Journal of Applied Polymer Science, 2010, 116, 2906-2912.	1.3	11
27	Theoretical analysis and experimental study on SO ₂ adsorption onto pistachioâ€nutâ€shell activated carbon. AICHE Journal, 2009, 55, 423-433.	1.8	8
28	Structural changes and development of transport properties during the conversion of a polyimide membrane to a carbon membrane. Journal of Applied Polymer Science, 2009, 113, 235-242.	1.3	7
29	Theoretical and experimental SO2 adsorption onto pistachio-nut-shell activated carbon for a fixed-bed column. Chemical Engineering Journal, 2009, 155, 175-183.	6.6	37
30	Experimental and theoretical studies on gas permeation through carbon molecular sieve membranes. Separation and Purification Technology, 2009, 69, 161-167.	3.9	7
31	Adsorption of phenol by oil–palm-shell activated carbons in a fixed bed. Chemical Engineering Journal, 2009, 150, 455-461.	6.6	67
32	Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption. Journal of Analytical and Applied Pyrolysis, 2008, 83, 175-179.	2.6	76
33	Preparation of activated carbons by utilizing solid wastes from palm oil processing mills. Journal of Porous Materials, 2008, 15, 535-540.	1.3	29
34	Concentration-dependent branched pore kinetic model for aqueous phase adsorption. Chemical Engineering Journal, 2008, 136, 227-235.	6.6	17
35	Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon, 2007, 45, 330-336.	5.4	129
36	Adsorption of phenol by oil-palm-shell activated carbons. Adsorption, 2007, 13, 129-137.	1.4	16

#	Article	IF	CITATIONS
37	Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide. Journal of Membrane Science, 2007, 305, 263-270.	4.1	64
38	Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon, 2006, 44, 2964-2972.	5.4	91
39	Isothermal and non-isothermal pyrolysis kinetics of Kapton® polyimide. Polymer Degradation and Stability, 2006, 91, 144-153.	2.7	89
40	Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons. Journal of Analytical and Applied Pyrolysis, 2006, 76, 96-102.	2.6	152
41	Influence of carbonisation parameters on the transport properties of carbon membranes by statistical analysis. Journal of Membrane Science, 2006, 278, 335-343.	4.1	23
42	Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Materials Chemistry and Physics, 2006, 100, 438-444.	2.0	125
43	Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. Journal of Colloid and Interface Science, 2005, 281, 285-290.	5.0	155
44	Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 2005, 290, 505-513.	5.0	165
45	Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis, 2004, 72, 279-287.	2.6	262
46	Effect of activation temperature on the textural and chemical properties ofÂpotassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid and Interface Science, 2004, 274, 594-601.	5.0	333
47	Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. Journal of Colloid and Interface Science, 2004, 276, 364-372.	5.0	77
48	Properties of pistachio-nut-shell activated carbons subjected to vacuum pyrolysis conditions. Carbon, 2004, 42, 224-226.	5.4	11
49	Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation. Separation and Purification Technology, 2003, 30, 265-273.	3.9	59
50	Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Materials Chemistry and Physics, 2003, 80, 114-119.	2.0	105
51	Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science, 2003, 267, 408-417.	5.0	272
52	Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials, 2003, 63, 113-124.	2.2	98
53	Numerical simulations and experimental studies on a target fluidic flowmeter. Flow Measurement and Instrumentation, 2003, 14, 43-49.	1.0	15
54	Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Materials Letters, 2002, 55, 334-339.	1.3	86

#	Article	IF	CITATIONS
55	Microporous Activated Carbons Prepared from Palm Shell by Thermal Activation and Their Application to Sulfur Dioxide Adsorption. Journal of Colloid and Interface Science, 2002, 251, 242-247.	5.0	67
56	Textural and Chemical Characterizations of Adsorbent Prepared from Palm Shell by Potassium Hydroxide Impregnation at Different Stages. Journal of Colloid and Interface Science, 2002, 254, 227-233.	5.0	75
57	Microporous Oil-Palm-Shell Activated Carbon Prepared by Physical Activation for Gas-Phase Adsorption. Langmuir, 2001, 17, 7112-7117.	1.6	61
58	Design and development of a low-cost digital display for water flow rate measurements. Microprocessors and Microsystems, 2001, 25, 359-368.	1.8	3
59	Proportional assist ventilation system based on proportional solenoid valve control. Medical Engineering and Physics, 2001, 23, 381-389.	0.8	10
60	Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 151-162.	2.3	82
61	Experimental and Kinetic Studies on Pore Development During CO2 Activation of Oil-Palm-Shell Char. Journal of Porous Materials, 2001, 8, 149-157.	1.3	13
62	Adsorption of Sulfur Dioxide on Activated Carbon from Oil-Palm Waste. Journal of Environmental Engineering, ASCE, 2001, 127, 895-901.	0.7	28
63	Adsorption of sulfur dioxide onto activated carbons prepared from oil-palm shells impregnated with potassium hydroxide. Journal of Chemical Technology and Biotechnology, 2000, 75, 971-976.	1.6	28
64	Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon, 2000, 38, 1985-1993.	5.4	149
65	Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon, 2000, 38, 1089-1097.	5.4	116
66	Title is missing!. Journal of Porous Materials, 2000, 7, 491-497.	1.3	31
67	Chars Pyrolyzed from Oil Palm Wastes for Activated Carbon Preparation. Journal of Environmental Engineering, ASCE, 1999, 125, 72-76.	0.7	12
68	Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation. Microporous and Mesoporous Materials, 1999, 32, 111-117.	2.2	113
69	Effect of surface chemistry on gas-phase adsorption by activated carbon prepared from oil-palm stone with pre-impregnation. Separation and Purification Technology, 1999, 18, 47-55.	3.9	33
70	Preparation and characterization of chars from oil palm waste. Carbon, 1998, 36, 1663-1670.	5.4	105
71	Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and Applied Pyrolysis, 1998, 46, 113-125.	2.6	118
72	Activated Carbons Prepared from Extracted-Oil Palm Fibers for Nitric Oxide Reduction. Energy & amp; Fuels, 1998, 12, 1089-1094.	2.5	8

#	Article	IF	CITATIONS
73	Particle characteristics of a stable fluidized bed aerosol generator. Journal of Aerosol Science, 1992, 23, 737-748.	1.8	5
74	A stable, high-concentration, dry aerosol generator. Journal of Aerosol Science, 1982, 13, 499-511.	1.8	13
75	Separation of Ethane Gas by Adsorption onto Various Biomass-Derived Activated Carbons. Advanced Materials Research, 0, 113-116, 1896-1899.	0.3	2
76	Catalytic Combustion of Pulverized Coal Injected into a Blast Furnace and its Industrial Test. Advanced Materials Research, 0, 113-116, 1766-1769.	0.3	1