
Rick Kapur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165779/publications.pdf Version: 2024-02-01

PICK KADUD

#	Article	IF	CITATIONS
1	Fc galactosylation of anti-platelet human IgG1 alloantibodies enhances complement activation on platelets. Haematologica, 2022, 107, 2432-2444.	3.5	17
2	Endothelial cells of pulmonary origin display unique sensitivity to the bacterial endotoxin lipopolysaccharide. Physiological Reports, 2022, 10, e15271.	1.7	2
3	Regulatory T cells are replenished in the splenic microenvironment of patients with immune thrombocytopenia by treatment with thrombopoietin receptor agonists. British Journal of Haematology, 2022, 198, 803-804.	2.5	2
4	A clinical prediction score for transient versus persistent childhood immune thrombocytopenia. Journal of Thrombosis and Haemostasis, 2021, 19, 121-130.	3.8	13
5	Monocytes as potential therapeutic sensors in glucocorticoidâ€treated newly diagnosed immune thrombocytopenia. British Journal of Haematology, 2021, 192, 233-234.	2.5	2
6	Matching epitopes in platelet refractoriness. Blood, 2021, 137, 283-284.	1.4	0
7	Pancreatic involvement in murine antibodyâ€mediated transfusionâ€related acute lung injury?. Transfusion, 2021, 61, 987-989.	1.6	1
8	Biological stratification of clinical disease courses in childhood immune thrombocytopenia. Journal of Thrombosis and Haemostasis, 2021, 19, 1071-1081.	3.8	3
9	Anti-CD44 (Kur)lander hits ITP. Blood, 2021, 137, 1997-1999.	1.4	0
10	Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet:erythrocyte ratios. Transfusion Medicine, 2021, , .	1.1	0
11	Decitabine revives Treg function in ITP. Blood, 2021, 138, 591-592.	1.4	1
12	Platelets instruct T reg cells and macrophages in the resolution of lung inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	4
13	Placental Complement Activation in Fetal and Neonatal Alloimmune Thrombocytopenia: An Observational Study. International Journal of Molecular Sciences, 2021, 22, 6763.	4.1	7
14	Potential Diagnostic Approaches for Prediction of Therapeutic Responses in Immune Thrombocytopenia. Journal of Clinical Medicine, 2021, 10, 3403.	2.4	12
15	Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood, 2021, 138, 2607-2620.	1.4	44
16	Megakaryocytes listen for their progeny's progeny during inflammation. Journal of Thrombosis and Haemostasis, 2021, 19, 604-606.	3.8	2
17	Platelets in ITP: Victims in Charge of Their Own Fate?. Cells, 2021, 10, 3235.	4.1	14
18	Fc-Mediated Complement Activation Is Associated with Macrophage Trafficking and Induction of Neutrophil Extracellular Traps in Transfusion-Related Acute Lung Injury. Blood, 2021, 138, 354-354.	1.4	0

RICK KAPUR

#	Article	IF	CITATIONS
19	Thrombopoietin receptor agonist (TPO-RA) treatment raises platelet counts and reduces anti-platelet antibody levels in mice with immune thrombocytopenia (ITP). Platelets, 2020, 31, 399-402.	2.3	31
20	An update on the pathophysiology of immune thrombocytopenia. Current Opinion in Hematology, 2020, 27, 423-429.	2.5	79
21	Evaluation of Platelet Responses in Transfusion-Related Acute Lung Injury (TRALI). Transfusion Medicine Reviews, 2020, 34, 227-233.	2.0	12
22	Evolution and Utility of Antiplatelet Autoantibody Testing in Patients with Immune Thrombocytopenia. Transfusion Medicine Reviews, 2020, 34, 258-269.	2.0	12
23	The Immune Nature of Platelets Revisited. Transfusion Medicine Reviews, 2020, 34, 209-220.	2.0	104
24	Update on the pathophysiology of transfusion-related acute lung injury. Current Opinion in Hematology, 2020, 27, 386-391.	2.5	16
25	Fineâ€ŧuning the treatment toolbox of immune thrombocytopenia: fostamatinib as a secondâ€line therapy. British Journal of Haematology, 2020, 190, 817-818.	2.5	5
26	Biological and structural characterization of murine TRALI antibody reveals increased Fc-mediated complement activation. Blood Advances, 2020, 4, 3875-3885.	5.2	8
27	New Emerging Developments of Platelets in Transfusion Medicine. Transfusion Medicine Reviews, 2020, 34, 207-208.	2.0	0
28	The contribution of recipient platelets in <scp>TRALI</scp> : has the jury reached a verdict?. Transfusion, 2020, 60, 886-888.	1.6	8
29	Anti-glycoprotein Ibα autoantibodies do not impair circulating thrombopoietin levels in immune thrombocytopenia patients. Haematologica, 2020, 105, e172-e174.	3.5	11
30	Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy. Scientific Reports, 2020, 10, 1464.	3.3	14
31	Platelet immunology from the inside out. ISBT Science Series, 2020, 15, 315-319.	1.1	11
32	FcγRI and FcγRIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica, 2020, 106, 250-254.	3.5	36
33	Analysing therapeutic responses in immune thrombocytopaenia: shifting the focus towards immune characteristics. British Journal of Haematology, 2020, 189, 811-812.	2.5	0
34	Treating murine inflammatory diseases with an anti-erythrocyte antibody. Science Translational Medicine, 2019, 11, .	12.4	15
35	The Role of Complement in Transfusion-Related Acute Lung Injury. Transfusion Medicine Reviews, 2019, 33, 236-242.	2.0	23
36	Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation. Blood, 2019, 134, 74-84.	1.4	42

Rick Kapur

#	Article	IF	CITATIONS
37	Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood, 2019, 133, 1840-1853.	1.4	174
38	The Ultimate Murine Model of Immune Thrombocytopaenia. Thrombosis and Haemostasis, 2019, 119, 353-354.	3.4	2
39	Transfusion-related Acute Lung Injury in the Perioperative Patient. Anesthesiology, 2019, 131, 693-715.	2.5	26
40	Transfusionâ€ e ssociated circulatory overload (<scp>TACO</scp>): Time to shed light on the pathophysiology. ISBT Science Series, 2019, 14, 136-139.	1.1	3
41	Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies. Critical Care Medicine, 2018, 46, e452-e458.	0.9	49
42	A highly purified form of staphylococcal protein A alleviates murine immune thrombocytopenia (<scp>ITP</scp>). British Journal of Haematology, 2018, 183, 501-503.	2.5	10
43	Platelet immunobiology: platelets as prey and predator. ISBT Science Series, 2018, 13, 87-92.	1.1	3
44	The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfusion Medicine and Hemotherapy, 2018, 45, 290-298.	1.6	70
45	Moving target PF4 directs HIT responses. Blood, 2018, 132, 678-679.	1.4	1
46	Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury. Blood Advances, 2018, 2, 1651-1663.	5.2	44
47	Immune Functions of Platelets. , 2018, , 241-259.		1
48	FcÎ ³ Receptors I and III on Splenic Macrophages Mediate GPIIb/IIIa Autoantibody-Dependent Phagocytosis of Platelets in Human Immune Thrombocytopenia. Blood, 2018, 132, 129-129.	1.4	0
49	Osteopontin Mediates Murine Transfusion-Related Acute Lung Injury through Stimulation of Pulmonary Neutrophil Accumulation. Blood, 2018, 132, 739-739.	1.4	0
50	T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood, 2017, 129, 2557-2569.	1.4	93
51	Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia. Platelets, 2017, 28, 521-524.	2.3	13
52	Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Advances, 2017, 1, 1773-1785.	5.2	90
53	Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). Journal of Clinical Medicine, 2017, 6, 16.	2.4	318
54	Low levels of interleukin-10 in patients with transfusion-related acute lung injury. Annals of Translational Medicine, 2017, 5, 339-339.	1.7	27

RICK KAPUR

#	Article	lF	CITATIONS
55	Gastrointestinal Flora Dictates the Biological Response in Murine Transfusion Related Acute Lung Injury (TRALI). Blood, 2017, 130, 766-766.	1.4	1
56	Platelets as immune-sensing cells. Blood Advances, 2016, 1, 10-14.	5.2	53
57	Platelet Functions Beyond Hemostasis. , 2016, , 221-237.		3
58	The nonhemostatic immune functions of platelets. Seminars in Hematology, 2016, 53, S2-S6.	3.4	26
59	The spleen dictates platelet destruction, anti-platelet antibody production, and lymphocyte distribution patterns in a murine model of immune thrombocytopenia. Experimental Hematology, 2016, 44, 924-930.e1.	0.4	34
60	CD20+ B-cell depletion therapy suppresses murine CD8+ T-cell–mediated immune thrombocytopenia. Blood, 2016, 127, 735-738.	1.4	55
61	Elevation of C-reactive protein levels in patients with transfusion-related acute lung injury. Oncotarget, 2016, 7, 78048-78054.	1.8	28
62	Alleviation of gram-negative bacterial lung inflammation by targeting HECTD2. Annals of Translational Medicine, 2016, 4, 488-488.	1.7	2
63	Interleukin (IL)-10 Is an Effective Therapeutic for Murine Transfusion Related Acute Lung Injury (TRALI). Blood, 2016, 128, 92-92.	1.4	1
64	C-reactive protein enhances murine antibody–mediated transfusion-related acute lung injury. Blood, 2015, 126, 2747-2751.	1.4	54
65	C-reactive protein enhances IgG-mediated phagocyte responses and thrombocytopenia. Blood, 2015, 125, 1793-1802.	1.4	74
66	Nouvelle Cuisine: Platelets Served with Inflammation. Journal of Immunology, 2015, 194, 5579-5587.	0.8	170
67	Prophylactic antiâ€ <scp>D</scp> preparations display variable decreases in <scp>F</scp> câ€fucosylation of antiâ€ <scp>D</scp> . Transfusion, 2015, 55, 553-562.	1.6	45
68	Thymic-Derived Tolerizing Dendritic Cells Are up-Regulated upon Treatment with Intravenous Immunoglobulin or Splenectomy in a Murine Model of Immune Thrombocytopenia. Blood, 2015, 126, 2251-2251.	1.4	1
69	Murine Bone Marrow-Derived Megakaryocytes Are Capable of Antigen Cross-Presentation on Major Histocompatibility Class (MHC) I Molecules. Blood, 2015, 126, 3465-3465.	1.4	3
70	C-Reactive Protein (CRP) Enhances Murine Antibody-Mediated Transfusion Related Acute Lung Injury (TRALI). Blood, 2015, 126, 3561-3561.	1.4	1
71	CD4+CD25+Foxp3+ T Regulatory Cells Protect Against Murine Antibody-Mediated Transfusion-Related Acute Lung Injury (TRALI). Blood, 2015, 126, 2342-2342.	1.4	0
72	Low antiâ€ <scp>R</scp> h <scp>D I</scp> g <scp>G</scp> â€ <scp>F</scp> câ€fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. British Journal of Haematology, 2014, 166, 936-945.	2.5	109

RICK KAPUR

#	Article	IF	CITATIONS
73	lgG-effector functions: "The Good, The Bad and The Ugly― Immunology Letters, 2014, 160, 139-144.	2.5	73
74	A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood, 2014, 123, 471-480.	1.4	187
75	Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. Glycoconjugate Journal, 2013, 30, 147-157.	2.7	76
76	Coupling porous sheathless interface <scp>MS</scp> with transientâ€ <scp>ITP</scp> in neutral capillaries for improved sensitivity in glycopeptide analysis. Electrophoresis, 2013, 34, 383-387.	2.4	38
77	Skewing towards Decreased Fc-Fucosylation of Platelet-Alloantibodies in Pregnancy. Blood, 2012, 120, 3331-3331.	1.4	1
78	C-Reactive Protein Plays a Role in Antibody-Mediated Platelet Destruction. Blood, 2011, 118, 526-526.	1.4	0
79	Regulated Glycosylation Patterns of IgG during Alloimmune Responses against Human Platelet Antigens. Journal of Proteome Research, 2009, 8, 450-456.	3.7	112
80	Cyproterone acetate- and ethinyloestradiol-containing oral contraceptive as a risk factor for upper extremity deep venous thrombosis–a case report. European Journal of Contraception and Reproductive Health Care, 2009, 14, 160-163.	1.5	1
81	B-cell involvement in chronic graft-versus-host disease. Haematologica, 2008, 93, 1702-1711.	3.5	53
82	A Rapid Method for Retrovirus-Mediated Identification of Complementation Groups in Fanconi Anemia Patients. Molecular Therapy, 2005, 12, 976-984.	8.2	79
83	HXT5 expression is under control of STRE and HAP elements in theHXT5 promoter. Yeast, 2004, 21, 747-757.	1.7	21
84	A Rapid Method for Retroviral Mediated Subtyping of Complementation Group in Fanconi Anemia Patients Blood, 2004, 104, 5261-5261.	1.4	1
85	Focused themed issue on immune thrombocytopenia (ITP). Annals of Blood, 0, 6, 1-1.	0.4	1
86	Impaired glucocorticoid receptor expression and mitochondrial metabolism in MDSCs contribute to glucocorticoid resistance in immune thrombocytopenia. , 0, , .		0