Meichuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165707/publications.pdf

Version: 2024-02-01

236833 330025 2,050 37 25 37 h-index citations g-index papers 37 37 37 2521 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Visible-light-driven molecularly imprinted self-powered sensor for atrazine with high sensitivity and selectivity by separating photoanode from recognition element. Sensors and Actuators B: Chemical, 2022, 360, 131670.	4.0	10
2	In situ monitoring of the selective adsorption mechanism of small environmental pollutant molecules on aptasensor interface by attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR–SEIRAS). Journal of Hazardous Materials, 2021, 403, 123953.	6.5	14
3	Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS Applied Materials & Interfaces, 2021, 13, 37212-37222.	4.0	27
4	Construction of a Reduced Graphene Oxide/TiO ₂ Nanotube Structure by the Click Reaction for Photoanodes. ACS Applied Nano Materials, 2021, 4, 13543-13551.	2.4	4
5	A novel self-powered aptasensor for environmental pollutants detection based on simple and efficient enzymatic biofuel cell. Sensors and Actuators B: Chemical, 2020, 305, 127468.	4.0	14
6	Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives. Journal of Hazardous Materials, 2020, 394, 122564.	6.5	49
7	Identification of the role of Cu site in Ni-Cu hydroxide for robust and high selective electrochemical ammonia oxidation to nitrite. Electrochimica Acta, 2020, 345, 136157.	2.6	51
8	Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti–Fe–O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochimica Acta, 2019, 324, 134820.	2.6	28
9	Immobilization-free photoelectrochemical aptasensor for environmental pollutants: Design, fabrication and mechanism. Biosensors and Bioelectronics, 2019, 140, 111352.	5.3	38
10	A simple and highly selective electrochemical label-free aptasensor of $17\hat{l}^2$ -estradiol based on signal amplification of bi-functional graphene. Talanta, 2019, 194, 266-272.	2.9	40
11	A simple, supersensitive and highly selective electrochemical aptasensor for Microcystin-LR based on synergistic signal amplification strategy with graphene, DNase I enzyme and Au nanoparticles. Electrochimica Acta, 2019, 293, 220-229.	2.6	23
12	Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. Environmental Science & Environme	4.6	207
13	A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO 2 @CNTs nanostructure. Journal of Hazardous Materials, 2017, 331, 309-320.	6.5	81
14	Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S–Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode. Environmental Science & Technology, 2017, 51, 8067-8076.	4.6	42
15	Photoelectrochemical Aptasensor for the Sensitive Detection of Microcystin‣R Based on Graphene Functionalized Verticallyâ€aligned TiO ₂ Nanotubes. Electroanalysis, 2016, 28, 161-168.	1.5	34
16	High-Yield and Selective Photoelectrocatalytic Reduction of CO ₂ to Formate by Metallic Copper Decorated Co ₃ O ₄ Nanotube Arrays. Environmental Science & Environmental	4.6	155
17	A Femtomolar Level and Highly Selective $17\hat{l}^2$ -estradiol Photoelectrochemical Aptasensor Applied in Environmental Water Samples Analysis. Environmental Science & Environmental Water Samples Analysis.	4.6	116
18	A Fetomolar Level $17\hat{l}^2$ -estradiol Electrochemical Aptasensor Constructed On Hierachical Dendritic Gold Modified Boron-Doped Diamond Electrode. Electrochimica Acta, 2014, 137, 146-153.	2.6	69

#	Article	IF	Citations
19	A Novel Photoelectrochemical Sensor for Bisphenol A with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Polypyrrole Modified TiO ₂ Nanotubes. Electroanalysis, 2013, 25, 771-779.	1.5	62
20	Aptamer-based colorimetric sensing of acetamiprid in soil samples: Sensitivity, selectivity and mechanism. Journal of Hazardous Materials, 2013, 260, 754-761.	6.5	165
21	Synergistic Photoelectrochemical Synthesis of Formate from CO ₂ on {121i} Hierarchical Co ₃ O ₄ . Journal of Physical Chemistry C, 2013, 117, 26432-26440.	1.5	62
22	A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosensors and Bioelectronics, 2013, 43, 12-18.	5.3	190
23	Direct Electrochemistry of Hemoglobin on Vertically Aligned Carbon Hybrid TiO ₂ Nanotubes and Its Highly Sensitive Biosensor Performance. Chinese Journal of Chemistry, 2013, 31, 215-220.	2.6	10
24	A Visibleâ€Light Driven Photoelectrochemical Aptasensor for Endocrine Disrupting Chemicals Bisphenol A with High Sensitivity and Specificity. Electroanalysis, 2013, 25, 1787-1795.	1.5	26
25	Rapid and sensitive amperometric determination of hydrogen peroxide with a biosensor based on a carboxyphenyl functionalised boron-doped diamond electrode. International Journal of Environmental Analytical Chemistry, 2012, 92, 534-547.	1.8	9
26	Fabrication of a Novel and Simple Microcystin-LR Photoelectrochemical Sensor with High Sensitivity and Selectivity. Environmental Science & Environmen	4.6	79
27	Construction of a carbon nanotube/diamond hybrid functionalized electrode surface. Journal of Solid State Electrochemistry, 2010, 14, 221-224.	1.2	13
28	A Simple, Stable and Picomole Level Lead Sensor Fabricated on DNA-based Carbon Hybridized TiO ₂ Nanotube Arrays. Environmental Science & Env	4.6	56
29	Fabrication of a Novel Atrazine Biosensor and Its Subpart-per-Trillion Levels Sensitive Performance. Environmental Science & Environmental Science & E	4.6	50
30	Integrated Biological and Electrochemical Oxidation Treatment for High Toxicity Pesticide Pollutant. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 5496-5503.	1.8	39
31	Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2009, 113, 19067-19076.	1.5	105
32	Fabrication and High Electrocatalytic Activity of Three-Dimensional Porous Nanosheet Pt/Boron-Doped Diamond Hybrid Film. Journal of Physical Chemistry C, 2009, 113, 13787-13792.	1.5	45
33	Electrode modified with toluidine blue-doped silica nanoparticles, and its use for enhanced amperometric sensing of hemoglobin. Analytical and Bioanalytical Chemistry, 2008, 391, 1951-1959.	1.9	19
34	Carboxyphenyl Covalent Immobilization of Heme Proteins and its Favorable Biocompatible Electrochemical and Electrocatalytic Characteristics. Electroanalysis, 2008, 20, 900-906.	1.5	11
35	Enhanced electron transfer by bovine serum albumin covalently attached to glassy carbon electrode and its application to determination of hydroquinone. International Journal of Environmental Analytical Chemistry, 2008, 88, 571-582.	1.8	1
36	Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO ₂ Nanotubes for Hemoprotein. Journal of Physical Chemistry C, 2008, 112, 14786-14795.	1.5	70

3

MEICHUAN LIU

#	Article	IF	CITATIONS
37	Simple and Feasible Simultaneous Determination of Three Phenolic Pollutants on Boronâ€Doped Diamond Film Electrode. Electroanalysis, 2007, 19, 1933-1938.	1.5	36