Catherine A Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An NAD+/NMN balancing act by SARM1 and NMNAT2 controls axonal degeneration. Neuron, 2021, 109, 1067-1069.	8.1	10
2	Regulation of longevity by depolarization-induced activation of PLC-β–IP ₃ R signaling in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
3	Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons. PLoS Genetics, 2021, 17, e1009731.	3.5	8
4	Stac protein regulates release of neuropeptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29914-29924.	7.1	9
5	Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw. Journal of Neuroscience, 2019, 39, 8457-8470.	3.6	11
6	Mutations in <i>VPS13D</i> lead to a new recessive ataxia with spasticity and mitochondrial defects. Annals of Neurology, 2018, 83, 1075-1088.	5.3	122
7	An axonal stress response pathway: degenerative and regenerative signaling by DLK. Current Opinion in Neurobiology, 2018, 53, 110-119.	4.2	49
8	Intrinsic mechanisms for axon regeneration: insights from injured axons in Drosophila. Current Opinion in Genetics and Development, 2017, 44, 84-91.	3.3	25
9	On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications. Lab on A Chip, 2017, 17, 2303-2322.	6.0	8
10	Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. ELife, 2017, 6, .	6.0	32
11	An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. ELife, 2016, 5, .	6.0	59
12	Mitochondria and Caspases Tune Nmnat-Mediated Stabilization to Promote Axon Regeneration. PLoS Genetics, 2016, 12, e1006503.	3.5	29
13	Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Reports, 2015, 12, 2009-2020.	6.4	25
14	A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. ELife, 2015, 4, .	6.0	26
15	Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae. Journal of Visualized Experiments, 2014, , e50998.	0.3	20
16	Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nature Chemical Biology, 2013, 9, 112-118.	8.0	166
17	Bimodal Control of Dendritic and Axonal Growth by the Dual Leucine Zipper Kinase Pathway. PLoS Biology, 2013, 11, e1001572.	5.6	34
18	Sodium and Potassium Currents Influence Wallerian Degeneration of Injured <i>Drosophila</i> Axons. Journal of Neuroscience, 2013, 33, 18728-18739.	3.6	35

CATHERINE A COLLINS

#	Article	IF	CITATIONS
19	Independent Pathways Downstream of the Wnd/DLK MAPKKK Regulate Synaptic Structure, Axonal Transport, and Injury Signaling. Journal of Neuroscience, 2013, 33, 12764-12778.	3.6	37
20	New Approaches for Studying Synaptic Development, Function, and Plasticity Using <i>Drosophila</i> as a Model System. Journal of Neuroscience, 2013, 33, 17560-17568.	3.6	28
21	The Highwire Ubiquitin Ligase Promotes Axonal Degeneration by Tuning Levels of Nmnat Protein. PLoS Biology, 2012, 10, e1001440.	5.6	161
22	Microfluidic Chips for In Vivo Imaging of Cellular Responses to Neural Injury in Drosophila Larvae. PLoS ONE, 2012, 7, e29869.	2.5	90
23	A Conditioning Lesion Protects Axons from Degeneration via the Wallenda/DLK MAP Kinase Signaling Cascade. Journal of Neuroscience, 2012, 32, 610-615.	3.6	80
24	Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. Journal of Cell Biology, 2010, 191, 211-223.	5.2	238
25	Visualizing glutamatergic cell bodies and synapses in <i>Drosophila</i> larval and adult CNS. Journal of Comparative Neurology, 2008, 508, 131-152.	1.6	168
26	Synaptic development: insights from Drosophila. Current Opinion in Neurobiology, 2007, 17, 35-42.	4.2	229
27	Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases. Current Biology, 2007, 17, 1313-1317.	3.9	140
28	A Single Vesicular Glutamate Transporter Is Sufficient to Fill a Synaptic Vesicle. Neuron, 2006, 49, 11-16.	8.1	162
29	Highwire Restrains Synaptic Growth by Attenuating a MAP Kinase Signal. Neuron, 2006, 51, 57-69.	8.1	311
30	Highwire Function at the Drosophila Neuromuscular Junction: Spatial, Structural, and Temporal Requirements. Journal of Neuroscience, 2005, 25, 9557-9566.	3.6	104
31	Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content. Journal of Neuroscience, 2004, 24, 10466-10474.	3.6	563
32	Coordinating Synaptic Growth without Being a Nervous Wreck. Neuron, 2004, 41, 489-491.	8.1	5
33	The question remains: is the spliceosome a ribozyme?. , 2000, 7, 850-854.		141
34	Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes and Development, 1999, 13, 1970-1982.	5.9	109
35	Mechanisms of Axonal Degeneration and Regeneration. , 0, , 575-592.		1