Idaira Pacheco-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165612/publications.pdf

Version: 2024-02-01

687220 610775 29 887 13 24 g-index citations h-index papers 31 31 31 952 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? $\hat{a} \in A$ review. Analytica Chimica Acta, 2016, 939, 26-41.	2.6	171
2	Green solvents in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 42-50.	3.2	141
3	Metal–Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices—A Review. Separations, 2019, 6, 47.	1.1	74
4	Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta, 2016, 158, 125-133.	2.9	60
5	Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Analytica Chimica Acta, 2021, 1143, 225-249.	2.6	45
6	Evolution and current advances in sorbent-based microextraction configurations. Journal of Chromatography A, 2020, 1634, 461670.	1.8	44
7	Biopolymers in sorbent-based microextraction methods. TrAC - Trends in Analytical Chemistry, 2020, 125, 115839.	5.8	41
8	Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid–liquid microextraction method for determining personal care products. Journal of Chromatography A, 2018, 1559, 102-111.	1.8	31
9	Green solid-phase microextraction fiber coating based on the metal-organic framework CIM-80(Al): Analytical performance evaluation in direct immersion and headspace using gas chromatography and mass spectrometry for the analysis of water, urine and brewed coffee. Analytica Chimica Acta, 2020, 1133, 137-149.	2.6	30
10	Zwitterionic polymeric ionic liquid-based sorbent coatings in solid phase microextraction for the determination of short chain free fatty acids. Talanta, 2019, 200, 415-423.	2.9	28
11	A Simple in vivo Assay Using Amphipods for the Evaluation of Potential Biocompatible Metal-Organic Frameworks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 584115.	2.0	28
12	Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Analytical and Bioanalytical Chemistry, 2018, 410, 4701-4713.	1.9	25
13	Role of Ionic Liquids in Composites in Analytical Sample Preparation. Separations, 2020, 7, 37.	1.1	23
14	Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta, 2021, 232, 122440.	2.9	21
15	Extraction With Ionic Liquids-Organic Compounds. , 2020, , 499-537.		14
16	Anti- Acanthamoeba activity of Tunisian Thymus capitatus essential oil and organic extracts. Experimental Parasitology, 2017, 183, 231-235.	0.5	13
17	Ionic liquid-based miniaturized aqueous biphasic system to develop an environmental-friendly analytical preconcentration method. Talanta, 2019, 203, 305-313.	2.9	13
18	Evaluation of Structurally Different Ionic Liquid-Based Surfactants in a Green Microwave-Assisted Extraction for the Flavonoids Profile Determination of Mangifera sp. and Passiflora sp. Leaves from Canary Islands. Molecules, 2020, 25, 4734.	1.7	12

#	Article	IF	CITATIONS
19	A guanidinium ionic liquid-based surfactant as an adequate solvent to separate and preconcentrate cadmium and copper in water using ⟨i⟩in situ⟨ i⟩ dispersive liquid–liquid microextraction. Analytical Methods, 2018, 10, 1529-1537.	1.3	11
20	Trends offered by ionic liquid-based surfactants: Applications in stabilization, separation processes, and within the petroleum industry. Separation and Purification Reviews, 2023, 52, 164-192.	2.8	11
21	Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with lonic Liquid-Based Surfactants. Molecules, 2020, 25, 3072.	1.7	10
22	Use of a pH-sensitive polymer in a microextraction and preconcentration method directly combined with high-performance liquid chromatography. Journal of Chromatography A, 2020, 1619, 460910.	1.8	10
23	Ionic Liquid-based Surfactants: A Step Forward. RSC Smart Materials, 2017, , 53-78.	0.1	8
24	Monitoring trihalomethanes in chlorinated waters using a dispersive liquid–liquid microextraction method with a non-chlorinated organic solvent and gas chromatography–mass spectrometry. Environmental Technology (United Kingdom), 2017, 38, 718-729.	1,2	5
25	A green miniaturized aqueous biphasic system prepared with cholinium chloride and a phosphate salt to extract and preconcentrate personal care products in wastewater samples. Journal of Chromatography A, 2021, 1648, 462219.	1.8	3
26	Metallic Coatings in Solid-Phase Microextraction: Environmental Applications. , 2018, , 217-243.		2
27	lonic liquids and derivatives in gas chromatography. , 2016, , 45-82.		1
28	Reticular materials in sorbent-based extraction methods. , 2021, , 323-376.		1
29	Magnetic ionic liquids in analytical sample separation techniques. , 2022, , 141-170.		1