Paul A Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165403/publications.pdf Version: 2024-02-01

DALL A CLADK

#	Article	IF	CITATIONS
1	Activation of Multiple ERBB Family Receptors Mediates Glioblastoma Cancer Stem-like Cell Resistance to EGFR-Targeted Inhibition. Neoplasia, 2012, 14, 420-IN13.	2.3	123
2	Alkylphosphocholine Analogs for Broad-Spectrum Cancer Imaging and Therapy. Science Translational Medicine, 2014, 6, 240ra75.	5.8	92
3	MicroRNAs in cancer: Glioblastoma and glioblastoma cancer stem cells. Neurochemistry International, 2014, 77, 68-77.	1.9	82
4	Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H ⁺ extrusion, cell migration and survival. Carcinogenesis, 2014, 35, 2014-2024.	1.3	77
5	CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages. Cancer Research, 2016, 76, 2552-2560.	0.4	69
6	Developmental signaling pathways in brain tumorâ€derived stemâ€like cells. Developmental Dynamics, 2007, 236, 3297-3308.	0.8	63
7	Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochemistry International, 2014, 71, 1-7.	1.9	62
8	Fluorescent Cancer-Selective Alkylphosphocholine Analogs for Intraoperative Glioma Detection. Neurosurgery, 2015, 76, 115-124.	0.6	60
9	Acid ceramidase and its inhibitors: a <i>de novo</i> drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget, 2017, 8, 112662-112674.	0.8	51
10	Differential Expression of 2′,3′-Cyclic-Nucleotide 3′-Phosphodiesterase and Neural Lineage Markers Correlate with Glioblastoma Xenograft Infiltration and Patient Survival. Clinical Cancer Research, 2012, 18, 3628-3636.	3.2	40
11	Administration of Non-Torsadogenic human Ether-Ã-go-go-Related Gene Inhibitors Is Associated with Better Survival for High hERG–Expressing Glioblastoma Patients. Clinical Cancer Research, 2017, 23, 73-80.	3.2	40
12	Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase. Molecular Cancer Therapeutics, 2018, 17, 1240-1250.	1.9	40
13	Porous implants as drug delivery vehicles to augment host tissue integration. FASEB Journal, 2008, 22, 1684-1693.	0.2	23
14	Tumor-Specific Antibody, Cetuximab, Enhances the In Situ Vaccine Effect of Radiation in Immunologically Cold Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 2020, 11, 591139.	2.2	23
15	ATR Inhibitor M6620 (VX-970) Enhances the Effect of Radiation in Non–Small Cell Lung Cancer Brain Metastasis Patient-Derived Xenografts. Molecular Cancer Therapeutics, 2021, 20, 2129-2139.	1.9	21
16	Yeast display biopanning identifies human antibodies targeting glioblastoma stem-like cells. Scientific Reports, 2017, 7, 15840.	1.6	18
17	Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix. Science Advances, 2019, 5, eaau4245.	4.7	17
18	Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Research, 2022, 1776, 147752.	1.1	16

PAUL A CLARK

#	Article	IF	CITATIONS
19	Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes. MSphere, 2017, 2, .	1.3	14
20	MicroRNA miR-100 Decreases Glioblastoma Growth by Targeting SMARCA5 and ErbB3 in Tumor-Initiating Cells. Technology in Cancer Research and Treatment, 2020, 19, 153303382096074.	0.8	14
21	Development and characterization of patient-derived xenografts from non-small cell lung cancer brain metastases. Scientific Reports, 2021, 11, 2520.	1.6	13
22	In situ vaccination at a peripheral tumor site augments response against melanoma brain metastases. , 2020, 8, e000809.		6
23	Low-Dose Radiation Potentiates the Propagation of Anti-Tumor Immunity against Melanoma Tumor in the Brain after In Situ Vaccination at a Tumor outside the Brain. Radiation Research, 2021, 195, 522-540.	0.7	6
24	Combination of Bempegaldesleukin and Anti-CTLA-4 Prevents Metastatic Dissemination After Primary Resection or Radiotherapy in a Preclinical Model of Non-Small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 645352.	1.3	2
25	Using Radiation Therapy to Prime and Propagate an Anti-tumor Immune Response Against Brain Tumors. NeuroMolecular Medicine, 2021, , 1.	1.8	2
26	Abstract 2256: Low dose brain radiotherapy enhances the efficacy of an extracranialin situvaccine regimen against melanoma brain metastases in a pre-clinical murine model. , 2020, , .		1
27	A multipurpose brachytherapy catheter to enable intratumoral injection. Brachytherapy, 2021, 20, 900-910.	0.2	0