Mingqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165275/publications.pdf

Version: 2024-02-01

52 2,074 25 45
papers citations h-index g-index

52 52 52 1664 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 2008, 82, 145-150.	2.6	225
2	Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency. Energy, 2017, 125, 795-804.	4.5	206
3	Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochimica Acta, 2006, 444, 110-114.	1.2	150
4	Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming. Applied Catalysis A: General, 2018, 550, 214-227.	2.2	96
5	Recent advances during CH4 dry reforming for syngas production: A mini review. International Journal of Hydrogen Energy, 2021, 46, 5852-5874.	3.8	94
6	A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochemistry, 2006, 41, 1883-1886.	1.8	88
7	Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts. International Journal of Hydrogen Energy, 2013, 38, 3948-3955.	3.8	77
8	Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts. Energy Conversion and Management, 2019, 184, 315-326.	4.4	76
9	Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: Effect of nickel content. Fuel Processing Technology, 2019, 192, 227-238.	3.7	72
10	Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. International Journal of Hydrogen Energy, 2014, 39, 13128-13135.	3.8	70
11	Influence of CoAl2O4 spinel and Co-phyllosilicate structures derived from Co/sepiolite catalysts on steam reforming of bio-oil for hydrogen production. Fuel, 2020, 279, 118449.	3.4	62
12	Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming. Fuel, 2018, 220, 32-46.	3.4	59
13	Steam reforming of phenol-ethanol to produce hydrogen over bimetallic Ni Cu catalysts supported on sepiolite. International Journal of Hydrogen Energy, 2017, 42, 28233-28246.	3.8	53
14	Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol. Renewable Energy, 2020, 160, 597-611.	4.3	44
15	Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (MÂ=ÂLa, Mg or Ca) catalysts. International Journal of Hydrogen Energy, 2021, 46, 21796-21811.	3.8	44
16	Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/Sepiolite catalyst. Fuel, 2019, 247, 344-355.	3.4	41
17	Steam reforming of methanol for hydrogen production over attapulgite-based zeolite-supported Cu-Zr catalyst. Fuel, 2022, 314, 122733.	3.4	38
18	Effect of Mo content in Mo/Sepiolite catalyst on catalytic depolymerization of Kraft lignin under supercritical ethanol. Energy Conversion and Management, 2020, 222, 113227.	4.4	37

#	Article	IF	CITATIONS
19	Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts. Catalysts, 2016, 6, 172.	1.6	36
20	Effects of attapulgite-supported transition metals catalysts on glycerol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 20451-20464.	3.8	36
21	Catalytic depolymerization of Kraft lignin to liquid fuels and guaiacol over phosphorus modified Mo/Sepiolite catalyst. Chemical Engineering Journal, 2022, 427, 131761.	6.6	35
22	Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts. International Journal of Hydrogen Energy, 2021, 46, 3651-3668.	3.8	34
23	Dry reforming of methane over Mn-Ni/attapulgite: Effect of Mn content on the active site distribution and catalytic performance. Fuel, 2022, 321, 124032.	3.4	29
24	Conversion of Kraft lignin to phenol monomers and liquid fuel over trimetallic catalyst W-Ni-Mo/sepiolite under supercritical ethanol. Fuel, 2021, 303, 121332.	3.4	28
25	Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts. International Journal of Hydrogen Energy, 2018, 43, 20438-20450.	3.8	27
26	The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil. Bioresource Technology, 2013, 129, 381-386.	4.8	24
27	Hydrogen production from ethanol steam reforming over Co–Ce/sepiolite catalysts prepared by a surfactant assisted coprecipitation method. International Journal of Hydrogen Energy, 2019, 44, 26888-26904.	3.8	24
28	Effect of Reduction Treatments of Mo/Sepiolite Catalyst on Lignin Depolymerization under Supercritical Ethanol. Energy &	2.5	22
29	Hydrogen production from aqueous phase reforming of glycerol over attapulgite-supported nickel catalysts: Effect of acid/base treatment and Fe additive. International Journal of Hydrogen Energy, 2022, 47, 7082-7099.	3.8	22
30	Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1317-1323.	2.0	20
31	Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming. Energy, 2021, 214, 118971.	4.5	19
32	Understanding relationship of sepiolite structure tailoring and the catalytic behaviors in glycerol steam reforming over Co/sepiolite derived Co-phyllosilicate catalyst. Renewable Energy, 2022, 183, 304-320.	4.3	19
33	Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation. Chinese Journal of Chemical Engineering, 2022, 48, 176-190.	1.7	19
34	Efficient conversion of Kraft lignin to guaiacol and 4-alkyl guaiacols over Fe-Fe3C/C based catalyst under supercritical ethanol. Fuel, 2022, 315, 123249.	3.4	19
35	Hydrogen production from catalytic steam reforming of toluene over trace of Fe and Mn doping Ni/Attapulgite. Journal of Analytical and Applied Pyrolysis, 2022, 165, 105584.	2.6	19
36	Ethyl levulinate production from cellulose conversion in ethanol medium over high-efficiency heteropoly acids. Fuel, 2022, 324, 124642.	3.4	17

#	Article	IF	CITATIONS
37	Hydrogen Production from Steam Reforming of Acetic Acid over Ni-Fe/Palygorskite Modified with Cerium. BioResources, 2017, 12, .	0.5	15
38	Study of Moâ€based sepiolite catalyst on depolymerization of lignin under supercritical ethanol. International Journal of Energy Research, 2020, 44, 257-268.	2.2	15
39	Depolymerization of lignin over CoO/m-SEP catalyst under supercritical methanol. Journal of Renewable and Sustainable Energy, 2019, 11 , .	0.8	12
40	Lignin catalytic depolymerization for liquid fuel and phenols by using Mo/sepiolite catalysts calcined at different temperature. Journal of Environmental Chemical Engineering, 2021, 9, 105348.	3.3	12
41	Modeling and analysis of the pyrolysis of bio-oil aqueous fraction in a fixed-bed reactor. Fuel, 2014, 133, 1-6.	3.4	10
42	The charge transfer effect on SERS in a gold-decorated surface defect anatase nanosheet/methylene blue (MB) system. New Journal of Chemistry, 2021, 45, 19775-19786.	1.4	8
43	Effect of DES-NiO System on Modified Lignin and Synthesis of Lignin-Based Epoxy Resin. Journal of Biobased Materials and Bioenergy, 2019, 13, 317-328.	0.1	5
44	Synthesis of Furfural from D-Xylose and Corncob with Chromium Chloride as Catalyst in Biphasic System. Asian Journal of Chemistry, 2014, 26, 1717-1720.	0.1	4
45	Microwave-assisted Pyrolysis of Cotton Stalk with Additives. BioResources, 2016, 11, .	0.5	4
46	Hydrogen production from steam reforming of ethylene glycol over iron loaded on MgO. AIP Conference Proceedings, 2017, , .	0.3	3
47	Microwave-assisted pyrolysis of seaweed biomass for aromatics-containing bio-oil production. E3S Web of Conferences, 2021, 261, 02045.	0.2	3
48	Combustion characteristics and kinetic analysis of bio-oil from fast pyrolysis of biomass. , 2013, , .		1
49	Hydrogen production by steam reforming of bio-oil aqueous fraction over Co-Fe/ZSM-5. IOP Conference Series: Earth and Environmental Science, 2018, 113, 012081.	0.2	1
50	Solubility of Alkali Lignin in Dilute Solutions of [BMIm]Cl at Room Temperature. Asian Journal of Chemistry, 2014, 26, 1707-1710.	0.1	0
51	The Molecular Beacons Self-Assembly Model of the Dislocation Permutation Problem. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1126-1131.	0.4	0
52	Influence of Microwave Power and Additive on Microwave-Assisted Pyrolysis of Cotton Stalk. Journal of Biobased Materials and Bioenergy, 2016, 10, 225-228.	0.1	0