List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3165211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversity and Genetic Structure of Theileria annulata in Pakistan and Other Endemic Sites. Pathogens, 2022, 11, 334.	1.2	2
2	Genetic Diversities and Historical Dynamics of Native Ethiopian Horse Populations (Equus caballus) Inferred from Mitochondrial DNA Polymorphisms. Genes, 2021, 12, 155.	1.0	3
3	Characterization of the Oral Microbiome of Medicated Type-2 Diabetes Patients. Frontiers in Microbiology, 2021, 12, 610370.	1.5	19
4	Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. Journal of Heredity, 2021, 112, 313-327.	1.0	10
5	Genetic diversity and population genetic structure in native Ethiopian donkeys (Equus asinus) inferred from equine microsatellite markers. Tropical Animal Health and Production, 2021, 53, 334.	0.5	2
6	Pervasive hybridization with local wild relatives in Western European grapevine varieties. Science Advances, 2021, 7, eabi8584.	4.7	11
7	Phylogenetic analysis of marginal Asiatic black bears reveals a recent Iranian–Himalayan divergence and has implications for taxonomy and conservation. Mammalian Biology, 2020, 100, 419-427.	0.8	1
8	Genetic structure of Omani goats reveals admixture among populations from geographically proximal sites. Small Ruminant Research, 2019, 178, 1-6.	0.6	3
9	Genome scan for selection in South American chickens reveals a region under selection associated with aggressiveness. Livestock Science, 2019, 225, 135-139.	0.6	0
10	The footprint of recent and strong demographic decline in the genomes of Mangalitza pigs. Animal, 2019, 13, 2440-2446.	1.3	18
11	The Local South American Chicken Populations Are a Melting-Pot of Genomic Diversity. Frontiers in Genetics, 2019, 10, 1172.	1.1	1
12	24. Genetic Documentation Of Horse And Donkey Domestication. , 2019, , 342-354.		7
13	Genomic differentiation between swamp and river buffalo using a cattle high-density single nucleotide polymorphisms panel. Animal, 2018, 12, 464-471.	1.3	9
14	Legacies of domestication, trade and herder mobility shape extant male zebu cattle diversity in South Asia and Africa. Scientific Reports, 2018, 8, 18027.	1.6	23
15	Linkage disequilibrium and haplotype block structure in Portuguese Holstein cattle. Czech Journal of Animal Science, 2018, 63, 61-69.	0.5	7
16	On the origins and genetic diversity of South American chickens: one step closer. Animal Genetics, 2017, 48, 353-357.	0.6	10
17	Brucellosis Transmission between Wildlife and Livestock in the Greater Yellowstone Ecosystem: Inferences from DNA Genotyping. Journal of Wildlife Diseases, 2017, 53, 339.	0.3	15
18	Improving DNA quality extracted from fecal samples—a method to improve DNA yield. European Journal of Wildlife Research, 2017, 63, 1.	0.7	14

#	Article	IF	CITATIONS
19	Heterozygosity decrease in wild boar mating system ―a case of outbreeding avoidance?. Journal of Zoology, 2017, 302, 40-48.	0.8	3
20	Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?. Journal of Animal Breeding and Genetics, 2017, 134, 78-84.	0.8	18
21	Maternal genetic diversity and phylogeography of native Arabian goats. Livestock Science, 2017, 206, 88-94.	0.6	10
22	Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis. PLoS ONE, 2017, 12, e0190235.	1.1	17
23	P1018 Comparison of high-density SNP chip versus Rad sequencing in cattle and related species. Journal of Animal Science, 2016, 94, 23-23.	0.2	1
24	Genetic characterisation of the endangered Gochu Asturcelta pig breed using microsatellite and mitochondrial markers: Insights for the composition of the Iberian native pig stock. Livestock Science, 2016, 187, 162-167.	0.6	9
25	Theileria lestoquardi displays reduced genetic diversity relative to sympatric Theileria annulata in Oman. Infection, Genetics and Evolution, 2016, 43, 297-306.	1.0	16
26	Genetic diversity of the Ethiopian Grevy's zebra (<i>Equus grevyi)</i> populations that includes a unique population of the Alledeghi Plain. Mitochondrial DNA, 2016, 27, 397-400.	0.6	4
27	Genetic diversity of donkey populations from the putative centers of domestication. Animal Genetics, 2015, 46, 30-36.	0.6	36
28	Reassessing the evolutionary history of ass-like equids: Insights from patterns of genetic variation in contemporary extant populations. Molecular Phylogenetics and Evolution, 2015, 85, 88-96.	1.2	18
29	Plasmodium falciparum population structure in Sudan post artemisinin-based combination therapy. Acta Tropica, 2015, 148, 97-104.	0.9	15
30	Detecting the T1 cattle haplogroup in the Iberian Peninsula from Neolithic to medieval times: new clues to continuous cattle migration through time. Journal of Archaeological Science, 2015, 59, 110-117.	1.2	20
31	Genetic Diversity and Population Structure of Theileria annulata in Oman. PLoS ONE, 2015, 10, e0139581.	1.1	22
32	Assessing The Spatial Dependence of Adaptive Loci in 43 European and Western Asian Goat Breeds Using AFLP Markers. PLoS ONE, 2014, 9, e86668.	1.1	15
33	Males and Females Contribute Unequally to Offspring Genetic Diversity in the Polygynandrous Mating System of Wild Boar. PLoS ONE, 2014, 9, e115394.	1.1	18
34	Genetic diversity and prevalence of CCR2-CCR5 gene polymorphisms in the Omani population. Genetics and Molecular Biology, 2014, 37, 7-14.	0.6	3
35	Lack of mitochondrial <scp>DNA</scp> structure in <scp>B</scp> alkan donkey is consistent with a quick spread of the species after domestication. Animal Genetics, 2014, 45, 144-147.	0.6	17
36	Meta-Analysis of Mitochondrial DNA Reveals Several Population Bottlenecks during Worldwide Migrations of Cattle. Diversity, 2014, 6, 178-187.	0.7	51

#	Article	IF	CITATIONS
37	<scp>exonsampler</scp> : a computer program for genomeâ€wide and candidate gene exon sampling for targeted nextâ€generation sequencing. Molecular Ecology Resources, 2014, 14, 1296-1301.	2.2	2
38	The prospect of malaria elimination in the Arabian Peninsula: A population genetic approach. Infection, Genetics and Evolution, 2014, 27, 25-31.	1.0	9
39	Genetic diversity and matrilineal genetic signature of native Ethiopian donkeys (Equus asinus) inferred from mitochondrial DNA sequence polymorphism. Livestock Science, 2014, 167, 73-79.	0.6	16
40	Sex-Biased Gene Flow Among Elk in the Greater Yellowstone Ecosystem. Journal of Fish and Wildlife Management, 2014, 5, 124-132.	0.4	3
41	Genetic diversity and maternal origin of Bangladeshi chicken. Molecular Biology Reports, 2013, 40, 4123-4128.	1.0	20
42	How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes. Immunogenetics, 2013, 65, 737-748.	1.2	7
43	Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen. Malaria Journal, 2013, 12, 244.	0.8	23
44	Disclosing the origin and diversity of <scp>O</scp> mani cattle. Animal Genetics, 2013, 44, 336-339.	0.6	12
45	Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 2013, 110, 277-282.	1.2	217
46	Donkey Domestication. African Archaeological Review, 2013, 30, 83-95.	0.8	62
47	Morphological diversities and ecozones of Ethiopian horse populations. Animal Genetic Resources = Ressources Genetiques Animales = Recursos Geneticos Animales, 2012, 50, 1-12.	0.2	14
48	Microsatellite markers for identification and parentage analysis in the European wild boar (Sus) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 30
49	Development and evaluation of a selective medium for Brucella suis. Research in Veterinary Science, 2012, 93, 565-567.	0.9	11
50	Cross-species genetic markers: a useful tool to study the world's most threatened wild equid—Equus africanus. European Journal of Wildlife Research, 2012, 58, 609-613.	0.7	6
51	Discordances between morphological systematics and molecular taxonomy in the stem line of equids: A review of the case of taxonomy of genus Equus. Livestock Science, 2012, 143, 105-115.	0.6	11
52	Novel coding genetic variants of the GBP1 gene in wild and domestic pigs (Sus scrofa). Livestock Science, 2012, 146, 1-4.	0.6	0
53	Source of drug resistant Plasmodium falciparum in a potential malaria elimination site in Saudi Arabia. Infection, Genetics and Evolution, 2012, 12, 1253-1259.	1.0	13
54	Genetic structure of the bovine Yâ€specific microsatellite <i>UMN0103</i> reflects the genetic history of the species. Animal Genetics, 2011, 42, 566-567.	0.6	4

#	Article	IF	CITATIONS
55	Eco-geographical structuring and morphological diversities in Ethiopian donkey populations. Livestock Science, 2011, 141, 232-241.	0.6	16
56	High connectivity among argali sheep from Afghanistan and adjacent countries: Inferences from neutral and candidate gene microsatellites. Conservation Genetics, 2011, 12, 921-931.	0.8	22
57	Molecular evidence for fat-tailed sheep domestication. Tropical Animal Health and Production, 2011, 43, 1237-1243.	0.5	20
58	Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species. BMC Evolutionary Biology, 2011, 11, 24.	3.2	8
59	Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics, 2011, 12, 347.	1.2	88
60	Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 50-57.	1.2	110
61	Argali Abundance in the Afghan Pamir Using Capture–Recapture Modeling From Fecal DNA. Journal of Wildlife Management, 2010, 74, 668-677.	0.7	40
62	Yâ€specific microsatellites reveal an African subfamily in taurine (<i>Bos taurus</i>) cattle. Animal Genetics, 2010, 41, 232-241.	0.6	51
63	Multiple paternal origins of domestic cattle revealed by Y-specific interspersed multilocus microsatellites. Heredity, 2010, 105, 511-519.	1.2	50
64	Zebu Cattle Are an Exclusive Legacy of the South Asia Neolithic. Molecular Biology and Evolution, 2010, 27, 1-6.	3.5	217
65	Hidden Consequences of Living in a Wormy World: Nematodeâ€Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo. American Naturalist, 2010, 176, 613-624.	1.0	205
66	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	1.0	504
67	DNA Genotyping Suggests that Recent Brucellosis Outbreaks in the Greater Yellowstone Area Originated from Elk. Journal of Wildlife Diseases, 2009, 45, 1174-1177.	0.3	34
68	Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genetics, 2009, 10, 7.	2.7	52
69	"HOOF-Print―genotyping and haplotype inference discriminates among Brucella spp. isolates from a small spatial scale. Infection, Genetics and Evolution, 2009, 9, 104-107.	1.0	8
70	Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources, 2009, 9, 1279-1301.	2.2	296
71	LOSITAN: A workbench to detect molecular adaptation based on a F st -outlier method. BMC Bioinformatics, 2008, 9, 323.	1.2	1,044
72	Paternity assessment in free-ranging wild boar (Sus scrofa) – Are littermates full-sibs?. Mammalian Biology, 2008, 73, 169-176.	0.8	28

 Short Communication: New Alleles of the Bovine ^î^e-Casein Gene Revealed by Resequencing and Haplotype Inference Analysis. Journal of Dairy Science, 2008, 91, 3682-3686. 	1.4	10
 MODELER4SIMCOAL2: A user-triendly, extensible modeler of demography and linked loci for coalescent simulations. Bioinformatics, 2007, 23, 1848-1850. 	1.8	7
 Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity. PLoS ONE, 2007, 2, e1012. 	1.1	185
 Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Animal Genetics, 2007, 38, 37-44. 	0.6	171
BACA: a mitochondrial genome retriever, organizer and visualizer. Molecular Ecology Notes, 2007, 7, 217-220.	1.7	2
Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Molecular Ecology Notes, 2006, 6, 992-997.	1.7	19
79 Geographical partitioning of goat diversity in Europe and the Middle East. Animal Genetics, 2006, 37, 327-334.	0.6	172
80 Multiple maternal origins of chickens: Out of the Asian jungles. Molecular Phylogenetics and Evolution, 2006, 38, 12-19.	1.2	379
The origin of European cattle: Evidence from modern and ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8113-8118.	3.3	271
82 The Origins of Iberian Horses Assessed via Mitochondrial DNA. Journal of Heredity, 2005, 96, 663-669.	1.0	52
83 Mitochondrial DNA variation and genetic relationships in Spanish donkey breeds (Equus asinus). Journal of Animal Breeding and Genetics, 2004, 121, 319-330.	0.8	24
⁸⁴ Twenty polymorphic microsatellites in two of North Africa's most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae; Artiodactyla). Molecular Ecology Notes, 2004, 4, 452-455.	1.7	19
African Origins of the Domestic Donkey. Science, 2004, 304, 1781-1781.	6.0	229
A standard set of polymorphic microsatellites for threatened mountain ungulates (Caprini,) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.7	0 Tf 50 222 To
87 Genetic structure of eighteen local south European beef cattle breeds by comparative F-statistics analysis. Journal of Animal Breeding and Genetics, 2003, 120, 73-87.	0.8	46
688 Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics, 2003, 35, 311-313.	9.4	371
⁸⁹ Genetic Characterization of Southwestern European Bovine Breeds: A Historical and Biogeographical Reassessment With a Set of 16 Microsatellites. , 2003, 94, 243-250.		78

⁹⁰Evidence for a geographical cline of casein haplotypes in Portuguese cattle breeds. Animal Genetics,
2002, 33, 295-300.0.629

#	Article	IF	CITATIONS
91	Genetic polymorphism of the 17th exon at porcine RYR1 locus: a new variant in a local Portuguese pig breed demonstrated by SSCP analysis. Journal of Animal Breeding and Genetics, 2001, 118, 271-274.	0.8	2
92	Genetic diversity measures of local European beef cattle breeds for conservation purposes. Genetics Selection Evolution, 2001, 33, 311-32.	1.2	146
93	Whole-Genome Analysis Deciphers Population Structure and Genetic Introgression Among Bovine Species. Frontiers in Genetics, 0, 13, .	1.1	Ο