
Alex Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stochastic modelling of bird flocks: accounting for the cohesiveness of collective motion. Journal of the Royal Society Interface, 2022, 19, 20210745.	1.5	10
2	Heat stress inhibits cognitive performance in wild Western Australian magpies, Cracticus tibicen dorsalis. Animal Behaviour, 2022, 188, 1-11.	0.8	17
3	Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Animal Behaviour, 2022, 188, 133-146.	0.8	2
4	Long-term repeatability of cognitive performance. Royal Society Open Science, 2022, 9, .	1.1	12
5	The role of natural history in animal cognition. Current Opinion in Behavioral Sciences, 2022, 46, 101154.	2.0	2
6	Animal Cognition in an Urbanised World. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	40
7	A deepening understanding of animal culture suggests lessons for conservation. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202718.	1.2	65
8	The impacts of heat stress on animal cognition: Implications for adaptation to a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e713.	3.6	24
9	Wild jackdaws respond to their partner's distress, but not with consolation. Royal Society Open Science, 2021, 8, 210253.	1.1	6
10	Social Learning in Birds. , 2021, , 503-533.		0
11	Cooperative nest building in wild jackdaw pairs. Animal Behaviour, 2021, 178, 149-163.	0.8	7
12	The value of teaching increases with tool complexity in cumulative cultural evolution. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201885.	1.2	18
13	The Role of Animal Cognition in Human-Wildlife Interactions. Frontiers in Psychology, 2020, 11, 589978.	1.1	33
14	Supporting the weight of the elephant in the room: Technical intelligence propped up by social cognition and language. Behavioral and Brain Sciences, 2020, 43, e179.	0.4	1
15	Local interactions and their group-level consequences in flocking jackdaws. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190865.	1.2	39
16	Collective turns in jackdaw flocks: kinematics and information transfer. Journal of the Royal Society Interface, 2019, 16, 20190450.	1.5	26
17	Larger group sizes facilitate the emergence and spread of innovations in a group-living bird. Animal Behaviour, 2019, 158, 1-7.	0.8	24
18	Behavioural plasticity and the transition to order in jackdaw flocks. Nature Communications, 2019, 10, 5174.	5.8	47

#	Article	IF	CITATIONS
19	Evidence for individual discrimination and numerical assessment in collective antipredator behaviour in wild jackdaws (<i>Corvus monedula</i>). Biology Letters, 2019, 15, 20190380.	1.0	20
20	Social learning about dangerous people by wild jackdaws. Royal Society Open Science, 2019, 6, 191031.	1.1	14
21	Animal Cognition: The Benefits of Remembering. Current Biology, 2019, 29, R324-R327.	1.8	3
22	Testing relationship recognition in wild jackdaws (Corvus monedula). Scientific Reports, 2019, 9, 6710.	1.6	5
23	Costs and benefits of social relationships in the collective motion of bird flocks. Nature Ecology and Evolution, 2019, 3, 943-948.	3.4	63
24	Animal cultures matter for conservation. Science, 2019, 363, 1032-1034.	6.0	136
25	Computational and Structural Advantages of Pairwise Flocking. , 2019, , .		0
26	Smarter through group living: A response to Smulders. Learning and Behavior, 2019, 47, 277-279.	0.5	4
27	Human mate-choice copying is domain-general social learning. Scientific Reports, 2018, 8, 1715.	1.6	18
28	Testing social learning of anti-predator responses in juvenile jackdaws: the importance of accounting for levels of agitation. Royal Society Open Science, 2018, 5, 171571.	1.1	17
29	Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 2018, 554, 364-367.	13.7	205
30	Wild jackdaws are wary of objects that violate expectations of animacy. Royal Society Open Science, 2018, 5, 181070.	1.1	13
31	Simultaneous measurements of three-dimensional trajectories and wingbeat frequencies of birds in the field. Journal of the Royal Society Interface, 2018, 15, 20180653.	1.5	22
32	Caller characteristics influence recruitment to collective anti-predator events in jackdaws. Scientific Reports, 2018, 8, 7343.	1.6	27
33	An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170288.	1.8	57
34	Measuring and understanding individual differences in cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170280.	1.8	148
35	What is cumulative cultural evolution?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180712.	1.2	159
36	Wild jackdaws' reproductive success and their offspring's stress hormones are connected to provisioning rate and brood size, not to parental neophobia. General and Comparative Endocrinology, 2017, 243, 70-77.	0.8	19

#	Article	IF	CITATIONS
37	Evolution of iris colour in relation to cavity nesting and parental care in passerine birds. Biology Letters, 2017, 13, 20160783.	1.0	22
38	Applications of machine learning in animal behaviour studies. Animal Behaviour, 2017, 124, 203-220.	0.8	344
39	Harnessing learning biases is essential for applying social learning in conservation. Behavioral Ecology and Sociobiology, 2017, 71, 16.	0.6	21
40	Fundamental problems with the cooperative breeding hypothesis. A reply to Burkart & van Schaik. Journal of Zoology, 2016, 299, 84-88.	0.8	20
41	Seasonal changes in neophobia and its consistency in rooks: the effect of novelty type and dominance position. Animal Behaviour, 2016, 121, 11-20.	0.8	58
42	Street smart: faster approach towards litter in urban areas by highly neophobic corvids and less fearful birds. Animal Behaviour, 2016, 117, 123-133.	0.8	71
43	Contagious risk taking: social information and context influence wild jackdaws' responses to novelty and risk. Scientific Reports, 2016, 6, 27764.	1.6	32
44	The Evolution of Individual and Cultural Variation in Social Learning. Trends in Ecology and Evolution, 2016, 31, 215-225.	4.2	149
45	The proximate-ultimate confusion in teaching and cooperation. Behavioral and Brain Sciences, 2015, 38, e69.	0.4	3
46	Cognitive requirements of cumulative culture: teaching is useful but not essential. Scientific Reports, 2015, 5, 16781.	1.6	77
47	Desperate Prawns: Drivers of Behavioural Innovation Vary across Social Contexts in Rock Pool Crustaceans. PLoS ONE, 2015, 10, e0139050.	1.1	8
48	Neophobia is not only avoidance: improving neophobia tests by combining cognition and ecology. Current Opinion in Behavioral Sciences, 2015, 6, 82-89.	2.0	148
49	Counting conformity: evaluating the units of information in frequency-dependent social learning. Animal Behaviour, 2015, 110, e5-e8.	0.8	34
50	Cognitive consequences of cooperative breeding? A critical appraisal. Journal of Zoology, 2015, 295, 12-22.	0.8	50
51	Wild jackdaws, Corvus monedula , recognize individual humans and may respond to gaze direction with defensive behaviour. Animal Behaviour, 2015, 108, 17-24.	0.8	29
52	Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 2015, 518, 538-541.	13.7	597
53	Translating cognitive insights into effective conservation programs: Reply to Schakner et al Trends in Ecology and Evolution, 2014, 29, 652-653.	4.2	3
54	Toward wild psychometrics: linking individual cognitive differences to fitness. Behavioral Ecology, 2014, 25, 1299-1301.	1.0	106

#	Article	IF	CITATIONS
55	How and why are some species so smart? A comment on Rowe and Healy. Behavioral Ecology, 2014, 25, 1294-1295.	1.0	7
56	Gaze sensitivity: function and mechanisms from sensory and cognitive perspectives. Animal Behaviour, 2014, 87, 3-15.	0.8	45
57	Salient eyes deter conspecific nest intruders in wild jackdaws (<i>Corvus monedula</i>). Biology Letters, 2014, 10, 20131077.	1.0	24
58	Comparative cognition for conservationists. Trends in Ecology and Evolution, 2014, 29, 489-495.	4.2	105
59	Jackdaw nestlings can discriminate between conspecific calls but do not beg specifically to their parents. Behavioral Ecology, 2014, 25, 565-573.	1.0	13
60	Heterogeneous structure in mixed-species corvid flocks in flight. Animal Behaviour, 2013, 85, 743-750.	0.8	49
61	Punishment and cooperation in nature. Trends in Ecology and Evolution, 2012, 27, 288-295.	4.2	244
62	Individual variation in cognitive performance: developmental and evolutionary perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2773-2783.	1.8	263
63	Animal minds: from computation to evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2670-2676.	1.8	17
64	How do banded mongooses locate and select anvils for cracking encased food items?. Behavioural Processes, 2012, 90, 350-356.	0.5	4
65	Teaching can teach us a lot. Animal Behaviour, 2012, 83, e6-e9.	0.8	60
66	Innovative problem solving in wild meerkats. Animal Behaviour, 2012, 83, 1459-1468.	0.8	168
67	Identification of Learning Mechanisms in a Wild Meerkat Population. PLoS ONE, 2012, 7, e42044.	1.1	43
68	Social learning and the development of individual and group behaviour in mammal societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 978-987.	1.8	172
69	Identifying teaching in wild animals. Learning and Behavior, 2010, 38, 297-309.	0.5	73
70	Multi-generational persistence of traditions in neighbouring meerkat groups. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3623-3629.	1.2	37
71	The development of foraging microhabitat preferences in meerkats. Behavioral Ecology, 2009, 20, 103-110.	1.0	13
72	The rise and fall of an arbitrary tradition: an experiment with wild meerkats. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1269-1276.	1.2	47

#	Article	IF	CITATIONS
73	Experimental evidence for social transmission of food acquisition techniques in wild meerkats. Animal Behaviour, 2009, 78, 255-264.	0.8	91
74	Early body condition, time budgets and the acquisition of foraging skills in meerkats. Animal Behaviour, 2008, 75, 951-962.	0.8	41
75	The evolution of teaching. Animal Behaviour, 2008, 75, 1823-1836.	0.8	247
76	Social learning about novel foods in young meerkats. Animal Behaviour, 2008, 76, 1411-1421.	0.8	55
77	Lessons from animal teaching. Trends in Ecology and Evolution, 2008, 23, 486-493.	4.2	217
78	Variation in contributions to teaching by meerkats. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1745-1751.	1.2	56
79	Teachers in the wild: some clarification. Trends in Cognitive Sciences, 2007, 11, 272-273.	4.0	53
80	Teaching in Wild Meerkats. Science, 2006, 313, 227-229.	6.0	410