Eugen Czeizler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164928/publications.pdf

Version: 2024-02-01

932766 476904 36 882 10 29 citations g-index h-index papers 43 43 43 1125 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA rendering of polyhedral meshes at the nanoscale. Nature, 2015, 523, 441-444.	13.7	576
2	Controlling Directed Protein Interaction Networks in Cancer. Scientific Reports, 2017, 7, 10327.	1.6	55
3	On a special class of primitive words. Theoretical Computer Science, 2010, 411, 617-630.	0.5	28
4	On the descriptional complexity of Watson–Crick automata. Theoretical Computer Science, 2009, 410, 3250-3260.	0.5	22
5	Structural Target Controllability of Linear Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1217-1228.	1.9	19
6	Search methods for tile sets in patterned DNA self-assembly. Journal of Computer and System Sciences, 2014, 80, 297-319.	0.9	17
7	Network analytics for drug repurposing in COVID-19. Briefings in Bioinformatics, 2022, 23, .	3.2	16
8	On the size of the inverse neighborhoods for one-dimensional reversible cellular automata. Theoretical Computer Science, 2004, 325, 273-284.	0.5	13
9	Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theoretical Computer Science, 2013, 499, 23-37.	0.5	13
10	On the power of parallel communicating Watson–Crick automata systems. Theoretical Computer Science, 2006, 358, 142-147.	0.5	9
11	An extension of the Lyndon–SchÃ⅓tzenberger result to pseudoperiodic words. Information and Computation, 2011, 209, 717-730.	0.5	9
12	Unambiguous Automata. Mathematics in Computer Science, 2008, 1, 625-638.	0.2	8
13	Target Controllability of Linear Networks. Lecture Notes in Computer Science, 2016, , 67-81.	1.0	8
14	Self-assembly Models of Variable Resolution. Lecture Notes in Computer Science, 2012, , 181-203.	1.0	7
15	The Phosphorylation of the Heat Shock Factor as a Modulator for the Heat Shock Response. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1326-1337.	1.9	6
16	Quantitative Analysis of the Self-Assembly Strategies of Intermediate Filaments from Tetrameric Vimentin. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 885-898.	1.9	6
17	A tight linear bound on the synchronization delay of bijective automata. Theoretical Computer Science, 2007, 380, 23-36.	0.5	5
18	Quantitative Model Refinement as a Solution to the Combinatorial Size Explosion of Biomodels. Electronic Notes in Theoretical Computer Science, 2012, 284, 35-53.	0.9	5

#	Article	IF	CITATIONS
19	NetControl4BioMed: a pipeline for biomedical data acquisition and analysis of network controllability. BMC Bioinformatics, 2018, 19, 185.	1.2	5
20	Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly. Lecture Notes in Computer Science, 2011, , 145-159.	1.0	5
21	Network controllability solutions for computational drug repurposing using genetic algorithms. Scientific Reports, 2022, 12, 1437.	1.6	5
22	Self-activating P Systems. Lecture Notes in Computer Science, 2003, , 234-246.	1.0	4
23	Fault Tolerant Design and Analysis of Carbon Nanotube Circuits Affixed on DNA Origami Tiles. IEEE Nanotechnology Magazine, 2015, 14, 871-877.	1.1	3
24	NetControl4BioMed: a web-based platform for controllability analysis of protein–protein interaction networks. Bioinformatics, 2021, 37, 3976-3978.	1.8	3
25	The phosphorylation of the heat shock factor as a modulator for the heat shock response. , 2011, , .		2
26	Computational modelling of the kinetic Tile Assembly Model using a rule-based approach. Theoretical Computer Science, 2017, 701, 203-215.	0.5	2
27	Simulation of one dimensional staged DNA tile assembly by the signal-passing hierarchical TAM. Procedia Computer Science, 2019, 159, 1918-1927.	1.2	2
28	Geometrical tile design for complex neighborhoods. Frontiers in Computational Neuroscience, 2009, 3, 20.	1.2	1
29	Towards a neighborhood simplification of tile systems: From Moore to quasi-linear dependencies. Natural Computing, 2011, 10, 103-117.	1.8	1
30	DNA-Guided Assembly of Nanocellulose Meshes. Lecture Notes in Computer Science, 2018, , 253-265.	1.0	1
31	DNA-Guided Assembly for Fibril Proteins. Mathematics, 2021, 9, 404.	1.1	1
32	Inner symmetries of the spatially singular part of the solutions of the Burgers equation and their Lie representations. Results in Physics, 2020, 19, 103322.	2.0	0
33	An Excursion Through Quantitative Model Refinement. Lecture Notes in Computer Science, 2015, , 25-47.	1.0	0
34	Fixed Parameter Algorithms and Hardness of Approximation Results for the Structural Target Controllability Problem. Lecture Notes in Computer Science, 2018, , 103-114.	1.0	0
35	Fixed Parameter Algorithms and Hardness of Approximation Results for the Structural Target Controllability Problem. Scientific Annals of Computer Science, 2022, XXXII, 109-136.	0.4	0
36	Fixed Parameter Algorithms and Hardness of Approximation Results for the Structural Target Controllability Problem. Scientific Annals of Computer Science, 2022, XXXII, 109-136.	0.4	0