
Kutlay Sever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164788/publications.pdf Version: 2024-02-01

KIITIAN SEVED

#	Article	IF	CITATIONS
1	A detailed characterization of sandalwood-filled high-density polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1903-1920.	2.6	4
2	Manufacturing and Modeling of Polypropylene-based Hybrid Composites by Using Multiple-Nonlinear Regression Analysis. , 2022, 2, 1-15.		0
3	Mechanical and thermal properties of <i>Carpinas betulus</i> fiber filled polypropylene composites. Polymer Composites, 2020, 41, 1925-1935.	2.3	17
4	Evaluation of Mechanical and Thermal Properties of Artichoke Filled Polypropylene Composites: Influence of Wollastonite Hybridization. Emerging Materials Research, 2020, 9, 1-6.	0.4	3
5	Evaluating of reinforcing effect of Ceratonia Siliqua for polypropylene: Tensile, flexural and other properties. Polymer Testing, 2020, 89, 106607.	2.3	10
6	The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 2019, 32, 1092-1106.	2.6	12
7	The Using of Graphene Nanoâ€Platelets for a Better throughâ€Plane Thermal Conductivity for Polypropylene. Polymer Composites, 2019, 40, E1320.	2.3	8
8	The effect of methyl-tri-n-butylammonium methylsulfate and graphite nanoplates on production of antistatic acrylic polymer. Polymer-Plastics Technology and Materials, 2019, 58, 1471-1479.	0.6	3
9	Investigation of thermal and mechanical properties of synthetic graphite and recycled carbon fiber filled polypropylene composites. Materials Research Express, 2019, 6, 065312.	0.8	8
10	The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators. Composites Part B: Engineering, 2019, 165, 747-753.	5.9	21
11	The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites. Journal of Applied Polymer Science, 2019, 136, 47131.	1.3	15
12	Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite. Polymer Composites, 2019, 40, 277-287.	2.3	27
13	Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers and Plastics, 2018, 50, 747-761.	0.7	20
14	Manufacturing of recycled carbon fiber reinforced polypropylene composites by high speed thermoâ€kinetic mixing for lightweight applications. Polymer Composites, 2018, 39, 3656-3665.	2.3	19
15	Characterizationâ€< and â€ <analysis actu<br="" chitosan-based="" electroactiveâ€<="" of="" â€<mâ€<echanismâ€<="" â€<mâ€<otion="">Carbohydrate Polymers, 2018, 181, 404-411.</analysis>	uator.	13
16	Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Science and Engineering of Composite Materials, 2017, 24, 289-295.	0.6	7
17	Manufacturing and mechanical, thermal and electrical characterization of graphene loaded chitosan composites. Composites Part B: Engineering, 2016, 98, 281-287.	5.9	28
18	Electromechanical performance of chitosan-based composite electroactive actuators. Composites Science and Technology, 2016, 129, 108-115.	3.8	23

KUTLAY SEVER

#	Article	IF	CITATIONS
19	Evaluation of linden fibre as a potential reinforcement material for polymer composites. Journal of Industrial Textiles, 2016, 45, 1221-1238.	1.1	23
20	The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite. Journal of Industrial Textiles, 2016, 45, 1252-1267.	1.1	35
21	Effects of PEG loading on electromechanical behavior of cellulose-based electroactive composite. Cellulose, 2015, 22, 1873-1881.	2.4	15
22	Improvement of the electromechanical performance of carboxymethylcellulose-based actuators by graphene nanoplatelet loading. Cellulose, 2015, 22, 3251-3260.	2.4	14
23	Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Composites Part B: Engineering, 2015, 69, 369-377.	5.9	42
24	Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering, 2014, 57, 180-186.	5.9	130
25	Investigation of the effects of PWM parameters on ionic polymer metal composite actuators. Smart Materials and Structures, 2014, 23, 095024.	1.8	2
26	Preparation and properties of rice huskâ€filled plasticized wheat gluten biocomposites. Polymer Engineering and Science, 2014, 54, 1477-1483.	1.5	3
27	Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites Part B: Engineering, 2013, 53, 226-233.	5.9	64
28	Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering, 2013, 44, 517-523.	5.9	187
29	Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Composites Part B: Engineering, 2013, 45, 565-572.	5.9	149
30	Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Composites Part B: Engineering, 2013, 45, 1534-1540.	5.9	32
31	Variations of mechanical properties of jute/polyester composite aged in various media. Journal of Composite Materials, 2012, 46, 2219-2225.	1.2	25
32	Mechanical anisotropy in unidirectional glass fabric reinforced oligomeric siloxane modified polyester composites. Fibers and Polymers, 2012, 13, 775-781.	1.1	5
33	Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Industrial Crops and Products, 2012, 35, 22-30.	2.5	91
34	Characterization of <i>Luffa cylindrica</i> fibers and the effect of water aging on the mechanical properties of its composite with polyester. Journal of Applied Polymer Science, 2012, 123, 2330-2337.	1.3	59
35	Effect of the atmospheric plasma treatment parameters on jute fabric: The effect on mechanical properties of jute fabric/polyester composites. Journal of Applied Polymer Science, 2011, 121, 634-638.	1.3	18
36	Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers and Polymers, 2010, 11, 1159-1164.	1.1	63

KUTLAY SEVER

#	Article	IF	CITATIONS
37	The Improvement of Mechanical Properties of Jute Fiber/LDPE Composites by Fiber Surface Treatment. Journal of Reinforced Plastics and Composites, 2010, 29, 1921-1929.	1.6	47
38	Improvement of Interfacial Adhesion of Glass Fiber/Epoxy Composite by Using Plasma Polymerized Glass Fibers. Journal of Adhesion, 2010, 86, 915-938.	1.8	4
39	The Mechanical Properties of γ-Methacryloxypropyltrimethoxy silane-treated Jute/Polyester Composites. Journal of Composite Materials, 2010, 44, 1913-1924.	1.2	86
40	Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers and Polymers, 2009, 10, 781-786.	1.1	62
41	The structure of γâ€glycidoxypropyltrimethoxysilane on glass fiber surfaces: Characterization by FTIR, SEM, and contact angle measurements. Polymer Composites, 2009, 30, 550-558.	2.3	10
42	Concentration effect of γâ€glycidoxypropyltrimethoxysilane on the mechanical properties of glass fiber–epoxy composites. Polymer Composites, 2009, 30, 1251-1257.	2.3	29
43	Effects of fiber surface treatments on mechanical properties of epoxy composites reinforced with glass fabric. Journal of Materials Science, 2008, 43, 4666-4672.	1.7	32
44	Manufacturing and Modeling of Hybrid Polymer Composites by Using Multiple-Nonlinear Regression Analysis. , 0, , .		0