Jiongyu Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/316468/publications.pdf

Version: 2024-02-01

933410 839512 17 412 10 18 h-index citations g-index papers 18 18 18 593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrasound Imaging Offers Promising Alternative to Create 3-D Models for Personalised Auricular Implants. Ultrasound in Medicine and Biology, 2022, 48, 450-459.	1.5	2
2	Development of 3D Printed Biodegradable Mesh with Antimicrobial Properties for Pelvic Organ Prolapse. Polymers, 2022, 14, 763.	4.5	10
3	In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials, 2022, 286, 121548.	11.4	19
4	The Patenting and Technological Trends in Hernia Mesh Implants. Tissue Engineering - Part B: Reviews, 2021, 27, 48-73.	4.8	5
5	Enzymeâ€Degradable 3D Multiâ€Material Microstructures. Advanced Functional Materials, 2021, 31, 2006998.	14.9	11
6	Additive manufacturing enables personalised porous high-density polyethylene surgical implant manufacturing with improved tissue and vascular ingrowth. Applied Materials Today, 2021, 22, 100965.	4.3	10
7	Using melt-electrowritten microfibres for tailoring scaffold mechanics of 3D bioprinted chondrocyte-laden constructs. Bioprinting, 2021, 23, e00158.	5.8	7
8	Poly- $\hat{l}\mu$ -Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers, 2021, 13, 3399.	4.5	10
9	Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration. Applied Materials Today, 2021, 25, 101230.	4.3	12
10	Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. ACS Applied Materials & Interfaces, 2020, 12, 47993-48006.	8.0	20
11	A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nature Protocols, 2020, 15, 877-924.	12.0	75
12	Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials, 2019, 220, 119402.	11.4	28
13	Investigation of Sustained BMP Delivery in the Prevention of Medicationâ€Related Osteonecrosis of the Jaw (MRONJ) in a Rat Model. Macromolecular Bioscience, 2019, 19, e1900226.	4.1	16
14	Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontiumâ€Substituted Bioactive Glass/Polycaprolactone Microfibers. Macromolecular Rapid Communications, 2019, 40, e1900019.	3.9	38
15	Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases, 2015, 10, 011006.	1.6	67
16	Meltâ€electrospun polycaprolactone strontiumâ€substituted bioactive glass scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 3140-3153.	4.0	77
17	Melt-electrospun polycaprolactone-strontium substituted bioactive glass scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	4.0	2