
Ji-Zhong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	21.0	2,457
2	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	14.9	2,055
3	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	21.0	1,095
4	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	14.9	1,072
5	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	21.0	982
6	Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. Journal of the American Chemical Society, 2017, 139, 11443-11450.	13.7	705
7	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	21.0	691
8	Monolayer and Few‣ayer Allâ€Inorganic Perovskites as a New Family of Twoâ€Dimensional Semiconductors for Printable Optoelectronic Devices. Advanced Materials, 2016, 28, 4861-4869.	21.0	614
9	Ce ³⁺ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr ₃ Nanocrystals Based Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 3626-3634.	13.7	442
10	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	21.0	431
11	Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30, e1805409.	21.0	409
12	Improving Allâ€Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. Small, 2016, 12, 5622-5632.	10.0	314
13	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	14.9	296
14	Superstable Transparent Conductive Cu@Cu ₄ Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Letters, 2014, 14, 6298-6305.	9.1	262
15	Cu–N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots. Angewandte Chemie - International Edition, 2015, 54, 6540-6544.	13.8	244
16	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	7.3	244
17	Double-Protected All-Inorganic Perovskite Nanocrystals by Crystalline Matrix and Silica for Triple-Modal Anti-Counterfeiting Codes. ACS Applied Materials & Interfaces, 2017, 9, 26556-26564.	8.0	232
18	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	31.4	231

JI-ZHONG SONG

#	Article	IF	CITATIONS
19	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	10.0	209
20	A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11, 3902.	12.8	204
21	Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision. Nano Letters, 2018, 18, 7628-7634.	9.1	180
22	Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66, 36-43.	9.0	162
23	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	5.5	149
24	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	5.5	138
25	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	13.8	135
26	A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 2019, 6, 100036.	4.6	118
27	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	14.9	118
28	Nearâ€Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology. Advanced Functional Materials, 2016, 26, 1793-1802.	14.9	114
29	Epitaxial ZnO Nanowireâ€onâ€Nanoplate Structures as Efficient and Transferable Field Emitters. Advanced Materials, 2013, 25, 5750-5755.	21.0	111
30	Stable, Efficient Red Perovskite Lightâ€Emitting Diodes by (α, Î) sPbI ₃ Phase Engineering. Advanced Functional Materials, 2018, 28, 1804285.	14.9	105
31	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	9.0	96
32	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	17.3	84
33	Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy, 2016, 30, 173-179.	16.0	82
34	Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Science and Applications, 2020, 9, 163.	16.6	81
35	A Ternary Solvent Method for Large‧ized Twoâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2017, 56, 2390-2394.	13.8	80
36	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie - International Edition, 2017, 56, 5232-5236.	13.8	75

ARTICLE IF CITATIONS Synthesis of stable and phase-adjustable CsPbBr₃@Cs₄PbBr₆ nanocrystals <i>via</i> novel anion–cation reactions. Nanoscale Advances, 2019, 1, 980-988. Green Perovskite Lightâ€Emitting Diodes with 200ÂHours Stability and 16% Efficiency: Crossâ€Linking 38 14.9 67 Strategy and Mechanism. Advanced Functional Materials, 2021, 31, 2011003. Quantum Dots: CsPbX₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes (Adv.) Tj ETQq1140.7843₺4 rgBT Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. 40 5.3 59 Communications Physics, 2018, 1, . Nanowire-based transparent conductors for flexible electronics and optoelectronics. Science Bulletin, 2017, 62, 143-156. Photonâ€Induced Reversible Phase Transition in CsPbBr₃ Perovskite. Advanced Functional 42 14.9 56 Materials, 2019, 29, 1807922. A General Oneâ€Pot Strategy for the Synthesis of Highâ€Performance Transparentâ€Conductingâ€Oxide Nanocrystal Inks for Allâ€Solutionâ€Processed Devices. Angewandte Chemie - International Edition, 2015, 54, 462-466. An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9, 8580-8585. 44 5.6 49 Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 3.7 49 1800010. Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient 46 8.0 48 Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 14224-14232. A zinc non-halide dopant strategy enables efficient perovskite CsPbl₃ quantum dot-based light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1444-1453. 5.9 48 Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Science 48 9.0 48 Bulletin, 2021, 66, 2189-2198. Highâ€Efficiency Pureâ€Color Inorganic Halide Perovskite Emitters for Ultrahighâ€Definition Displays: 8.6 Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382. Perovskite Nanocrystal Fluorescence-Linked Immunosorbent Assay Methodology for Sensitive 50 10.0 46 Point-of-Care Biological Test. Matter, 2020, 3, 273-286. Controlling oxygen vacancies and properties of ZnO. Current Applied Physics, 2014, 14, 521-527. Flexible quantum dotâ€"PVA composites for white LEDs. Journal of Materials Chemistry C, 2015, 3, 52 5.5 41 257-264. Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China 6.3 38 Materials, 2017, 60, 811-818.

JI-ZHONG SONG

54Room-temperature synthesis of perovskite-phase CsPbI3 nanocrystals for optoelectronics via a
ligand-mediated strategy. Chemical Engineering Journal, 2021, 418, 129361.12.738

JI-ZHONG SONG

#	Article	IF	CITATIONS
55	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	3.1	37
56	Wearable and visual pressure sensors based on Zn ₂ GeO ₄ @polypyrrole nanowire aerogels. Journal of Materials Chemistry C, 2017, 5, 11018-11024.	5.5	34
57	Ag/white graphene foam for catalytic oxidation of methanol with high efficiency and stability. Journal of Materials Chemistry A, 2015, 3, 6679-6684.	10.3	28
58	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie, 2017, 129, 2430-2434.	2.0	28
59	A low-dimension structure strategy for flexible photodetectors based on perovskite nanosheets/ZnO nanowires with broadband photoresponse. Science China Materials, 2020, 63, 100-109.	6.3	26
60	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	2.3	25
61	Bicolor Light-Emitting Diode Based on Zinc Oxide Nanorod Arrays and Poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene. Journal of Electronic Materials, 2012, 41, 431-436.	2.2	24
62	ZnO-Nanowires/PANI Inorganic/Organic Heterostructure Light-Emitting Diode. Journal of Nanoscience and Nanotechnology, 2010, 10, 7254-7257.	0.9	23
63	Nanocrystals: Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃) (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7161-7161.	21.0	23
64	Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Advances, 2016, 6, 91394-91400.	3.6	19
65	Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. Journal of Semiconductors, 2020, 41, 052205.	3.7	19
66	All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. Journal of Materials Chemistry A, 2021, 9, 18947-18973.	10.3	19
67	Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs. Journal of Nanoparticle Research, 2010, 12, 3019-3024.	1.9	18
68	Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 13445-13452.	5.5	17
69	High-temperature-mixing hydrothermal synthesis of ZnO nanocrystals with wide growth window. Current Applied Physics, 2014, 14, 359-365.	2.4	16
70	Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach. Science Bulletin, 2017, 62, 693-699.	9.0	16
71	Flat, Luminescent, and Defect-Less Perovskite Films on PVK for Light-Emitting Diodes with Enhanced Efficiency and Stability. ACS Applied Electronic Materials, 2020, 2, 3530-3537.	4.3	16
72	Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering. Journal of Physical Chemistry C, 2021, 125, 5475-5484.	3.1	15

JI-ZHONG SONG

#	Article	IF	CITATIONS
73	MgZnO Nanocrystals: Mechanism for Dopantâ€Stimulated Selfâ€Assembly. Small, 2015, 11, 5097-5104.	10.0	12
74	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie, 2017, 129, 5316-5320.	2.0	12
75	Nanowire network-based photodetectors with imaging performance for omnidirectional photodetecting through a wire-shaped structure. RSC Advances, 2018, 8, 33666-33673.	3.6	12
76	The Synergy of Plasmonic Enhancement and Hotâ€Electron Effect on CsPbBr ₃ Nanosheets Photodetector. Advanced Materials Interfaces, 2021, 8, 2002053.	3.7	12
77	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	4.3	11
78	Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. Nanoscale, 2017, 9, 19374-19383.	5.6	10
79	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	4.7	9
80	ZnO nanowire lines and bundles: Template-deformation-guided alignment for patterned field-electron emitters. Current Applied Physics, 2015, 15, 1296-1302.	2.4	6
81	Self-template Synthesis of Metal Halide Perovskite Nanotubes as Functional Cavities for Tailored Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 21100-21108.	8.0	6
82	CsPbl ₃ Perovskite Quantum Dots: Fine Purification and Highly Efficient Light-emitting Diodes. Acta Chimica Sinica, 2021, 79, 126.	1.4	6
83	Colloidal metal oxides in electronics and optoelectronics. , 2020, , 203-246.		3
84	Field Emitters: Epitaxial ZnO Nanowire-on-Nanoplate Structures as Efficient and Transferable Field Emitters (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5678-5678.	21.0	2
85	Rücktitelbild: A General One-Pot Strategy for the Synthesis of High-Performance Transparent-Conducting-Oxide Nanocrystal Inks for All-Solution-Processed Devices (Angew. Chem.) Tj ETQq1 1 0.	7 843 14 r	gBIT /Overloo
86	Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs. Engineering Materials, 2022, , 3-49.	0.6	1
87	51.4: <i>Invited Paper:</i> Quantum dot lightâ€emitting diodes based on allâ€inorganic perovskite CsPbX ₃ . Digest of Technical Papers SID International Symposium, 2019, 50, 569-569.	0.3	0
88	Pâ€13.4: Allâ€Inorganic Perovskite Lightâ€Emitting Diodes based on Heatingâ€Assisted Vacuum Evaporation wit ultraâ€pure emission. Digest of Technical Papers SID International Symposium, 2019, 50, 966-966.	h 0.3	0
89	Pâ€13.6: Efficiency Improvement of CsPbl ₃ Quantum dot Light Emitting Diodes via Alkyl Chain Ligand Regulation. Digest of Technical Papers SID International Symposium, 2019, 50, 970-970.	0.3	0
90	Photodetectors Based on Perovskite Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2021, , 75-117.	0.8	0

#	Article	IF	CITATIONS
91	IMPROVEMENT OF OPTICAL PROPERTIES OF ZnO-SILICONE NANOCOMPOSITES BY CHEMICAL GRAFTING. Acta Polymerica Sinica, 2010, 00, 1406-1410.	0.0	Ο