
Chih-Chia Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Assembly Behavior of Heteronucleobase-Functionalized Poly(ε-caprolactone). Macromolecules, 2010, 43, 1245-1252.	4.8	84
2	A simple approach toward lowâ€dielectric polyimide nanocomposites: Blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A, 2008, 46, 6296-6304.	2.3	53
3	Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug delivery systems. Polymer Chemistry, 2016, 7, 6164-6169.	3.9	47
4	A "plug and play―polymer through biocomplementary hydrogen bonding. Journal of Polymer Science Part A, 2008, 46, 6416-6424.	2.3	46
5	Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Acta Biomaterialia, 2016, 33, 194-202.	8.3	45
6	Supramolecular Assembly Mediates the Formation of Single-Chain Polymeric Nanoparticles. ACS Macro Letters, 2015, 4, 1184-1188.	4.8	41
7	Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: <i>In Vitro</i> Investigation. Biomacromolecules, 2018, 19, 2772-2781.	5.4	39
8	Selfâ€Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600370.	4.1	38
9	Enhanced Thermal Conductivity of Epoxy Composites Filled with Al2O3/Boron Nitride Hybrids for Underfill Encapsulation Materials. Polymers, 2021, 13, 147.	4.5	38
10	Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules, 2018, 51, 1189-1197.	4.8	37
11	Biocomplementary interaction behavior in DNAâ€ŀike and RNAâ€ŀike polymers. Journal of Polymer Science Part A, 2009, 47, 6388-6395.	2.3	36
12	Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials, 2017, 29, 8513-8520.	6.7	36
13	Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry, 2017, 8, 3294-3299.	3.9	35
14	Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. Nanoscale, 2019, 11, 10393-10401.	5.6	33
15	A New Supramolecular Hole Injection/Transport Material on Conducting Polymer for Application in Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 1894-1898.	21.0	32
16	Bioinspired hole-conducting polymers for application in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 18127.	6.7	31
17	A new supramolecular POSS electroluminescent material. Journal of Materials Chemistry, 2012, 22, 9285.	6.7	31
18	Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells. Pharmaceutics, 2020, 12, 443.	4.5	30

#	Article	IF	CITATIONS
19	Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. Nanoscale, 2016, 8, 723-728.	5.6	29
20	Selfâ€supporting Polymer from a POSS Derivative. Macromolecular Rapid Communications, 2011, 32, 927-932.	3.9	28
21	High-efficiency self-healing materials based on supramolecular polymer networks. RSC Advances, 2015, 5, 101148-101154.	3.6	28
22	Supramolecular structures of uracil-functionalized PEG with multi-diamidopyridine POSS through complementary hydrogen bonding interactions. Soft Matter, 2013, 9, 5196.	2.7	27
23	New bioinspired hole injection/transport materials for highly efficient solution-processed phosphorescent organic light-emitting diodes. Nano Energy, 2015, 13, 1-8.	16.0	27
24	Bio-complementary supramolecular polymers with effective self-healing functionality. RSC Advances, 2015, 5, 90466-90472.	3.6	27
25	Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. RSC Advances, 2015, 5, 76451-76457.	3.6	27
26	CO ₂ -Switchable Multi-Stimuli-Responsive Polymer Nanoparticle Dispersion. ACS Applied Nano Materials, 2018, 1, 384-393.	5.0	26
27	Visualization platform of one-dimensional gratings of tethered polyvinyltetrazole brushes on silicon surfaces for sensing of Cr(III). Mikrochimica Acta, 2017, 184, 2723-2730.	5.0	25
28	Piezoelectric Property Enhancement of PZT/Poly(vinylidenefluoride- <i>co</i> -trifluoroethylene) Hybrid Films for Flexible Piezoelectric Energy Harvesters. ACS Omega, 2022, 7, 793-803.	3.5	25
29	A new supramolecular film formed from a silsesquioxane derivative for application in proton exchange membranes. Journal of Materials Chemistry, 2012, 22, 731-734.	6.7	23
30	Bioinspired supramolecular fibers for mercury ion adsorption. Journal of Materials Chemistry A, 2013, 1, 7745.	10.3	23
31	Nucleobaseâ€Functionalized Supramolecular Micelles with Tunable Physical Properties for Efficient Controlled Drug Release. Macromolecular Bioscience, 2016, 16, 1415-1421.	4.1	23
32	Bioinspired Photo-Cross-Linked Nanofibers from Uracil-Functionalized Polymers. ACS Macro Letters, 2012, 1, 159-162.	4.8	22
33	Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science, 2018, 9, 5452-5460.	7.4	22
34	Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal, 2019, 110, 403-412.	5.4	22
35	Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors. Nanomaterials, 2020, 10, 1009.	4.1	22
36	Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polymer Chemistry, 2017, 8, 2292-2298.	3.9	21

#	Article	IF	CITATIONS
37	Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites. Composites Science and Technology, 2017, 148, 89-96.	7.8	21
38	Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs To Improve the Efficacy of Cancer Chemotherapy. Biomacromolecules, 2019, 20, 4535-4545.	5.4	21
39	A new benzoxazine containing uracil, complementary functionality. Polymer Chemistry, 2011, 2, 1648.	3.9	20
40	Highly Effective Photocontrollable Drug Delivery Systems Based on Ultrasensitive Light-Responsive Self-Assembled Polymeric Micelles: An <i>in Vitro</i> Therapeutic Evaluation. ACS Applied Bio Materials, 2019, 2, 2162-2170.	4.6	20
41	Hydrogen-bonded supramolecular micelle-mediated drug delivery enhances the efficacy and safety of cancer chemotherapy. Polymer Chemistry, 2020, 11, 2791-2798.	3.9	20
42	Nucleobase-grafted polycaprolactones as reversible networks in a novel biocompatible material. RSC Advances, 2013, 3, 12598.	3.6	18
43	Water-Soluble Single-Chain Polymeric Nanoparticles for Highly Selective Cancer Chemotherapy. ACS Applied Polymer Materials, 2021, 3, 474-484.	4.4	18
44	Synthesis and self-assembly of water-soluble polythiophene-graft-poly(ethylene oxide) copolymers. RSC Advances, 2014, 4, 21830-21839.	3.6	17
45	Supramolecular electrospun nanofibers with high conductivity at ultra-low carbon nanotube content. Journal of Materials Chemistry C, 2016, 4, 5207-5213.	5.5	17
46	CO 2 -switchable behavior of chitosan- g -poly[(2-dimethylamino)ethyl methacrylate] as an emulsifier. Carbohydrate Polymers, 2017, 170, 281-288.	10.2	17
47	Enhanced Piezoelectric Properties of Poly(Vinylidenefluoride-Co-Trifluoroethylene)/Carbon-Based Nanomaterial Composite Films for Pressure Sensing Applications. Polymers, 2020, 12, 2999.	4.5	17
48	New self-assembled supramolecular polymers formed by self-complementary sextuple hydrogen bond motifs. RSC Advances, 2012, 2, 9952.	3.6	16
49	Hierarchical structures formed from self-complementary sextuple hydrogen-bonding arrays. RSC Advances, 2011, 1, 1190.	3.6	15
50	Controllable 3D Hot-Junctions of Silver Nanoparticles Stabilized by Amphiphilic Tri-block Copolymer/Graphene Oxide Hybrid Surfactants for Use as Surface-Enhanced Raman Scattering Substrates. Industrial & Engineering Chemistry Research, 2017, 56, 2935-2942.	3.7	15
51	Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation. Acta Biomaterialia, 2017, 50, 476-483.	8.3	14
52	Supramolecular polymer micelles as universal tools for constructing high-performance fluorescent nanoparticles. Dyes and Pigments, 2017, 137, 284-292.	3.7	14
53	Multistimuli-Responsive Emulsifiers Based on Two-Way Amphiphilic Diblock Polymers. ACS Omega, 2019, 4, 15479-15487.	3.5	14
54	Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. Journal of Colloid and Interface Science, 2019, 552, 166-178.	9.4	14

#	Article	IF	CITATIONS
55	Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy. International Journal of Molecular Sciences, 2020, 21, 4677.	4.1	14
56	Cytosine-Functionalized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing. Biomacromolecules, 2020, 21, 3857-3866.	5.4	13
57	Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomaterialia, 2021, 129, 235-244.	8.3	13
58	Polymer-Assisted Dispersion of Boron Nitride/Graphene in a Thermoplastic Polyurethane Hybrid for Cooled Smart Clothes. ACS Omega, 2021, 6, 28779-28787.	3.5	13
59	Block-copolymer-like supramolecules confined in nanolamellae. Soft Matter, 2012, 8, 3747.	2.7	12
60	In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. Materials Science and Engineering C, 2020, 106, 110245.	7.3	12
61	Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polymer Chemistry, 2020, 11, 849-856.	3.9	12
62	Photo-Responsive Supramolecular Micelles for Controlled Drug Release and Improved Chemotherapy. International Journal of Molecular Sciences, 2021, 22, 154.	4.1	12
63	A New Poly(amide urethane) Solid State Electrolyte Containing Supramolecular Structure. Macromolecules, 2010, 43, 2634-2637.	4.8	11
64	Supramolecular assembly-mediated lithium ion transport in nanostructured solid electrolytes. RSC Advances, 2016, 6, 38223-38227.	3.6	11
65	Nucleobase-functionalized supramolecular polymer films with tailorable properties and tunable biodegradation rates. Polymer Chemistry, 2017, 8, 1454-1459.	3.9	11
66	Dual CO ₂ /temperature-responsive diblock copolymers confer controlled reversible emulsion behavior. Polymer Chemistry, 2019, 10, 2641-2646.	3.9	11
67	Hydrogen Bond Strength-Mediated Self-Assembly of Supramolecular Nanogels for Selective and Effective Cancer Treatment. Biomacromolecules, 2021, 22, 4446-4457.	5.4	11
68	Manipulation of ferrofluids encapsulated in sandwich structures using alternating magnetic field for high contrast in transmittance. Microfluidics and Nanofluidics, 2015, 19, 1441-1453.	2.2	10
69	Supramolecular polymeric micelles as high performance electrochemical materials. Journal of Materials Chemistry C, 2015, 3, 9528-9533.	5.5	10
70	Bioinspired assembly of functional block-copolymer nanotemplates. Soft Matter, 2013, 9, 9608.	2.7	9
71	Complementary hydrogen bonding interaction-mediated hole injection in organic light-emitting devices. Journal of Materials Chemistry C, 2017, 5, 4736-4741.	5.5	9
72	Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4096-4105.	5.2	9

#	Article	IF	CITATIONS
73	New transparent poly(<scp>l</scp> -lactide acid) films as high-performance bio-based nanocomposites. RSC Advances, 2016, 6, 23949-23955.	3.6	8
74	Water-soluble fullerene-functionalized polymer micelles for efficient aqueous-processed conductive devices. Polymer Chemistry, 2017, 8, 7469-7474.	3.9	8
75	Facile Fabrication of Flexible Electrodes and Immobilization of Silver Nanoparticles on Nanoscale Silicate Platelets to Form Highly Conductive Nanohybrid Films for Wearable Electronic Devices. Nanomaterials, 2020, 10, 65.	4.1	8
76	CO ₂ -Responsive Water-Soluble Conjugated Polymers for <i>In Vitro</i> and <i>In Vivo</i> Biological Imaging. Biomacromolecules, 2020, 21, 5282-5291.	5.4	8
77	Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water. Nanomaterials, 2020, 10, 2006.	4.1	8
78	Complementary Nucleobase Interactions Drive Co-Assembly of Drugs and Nanocarriers for Selective Cancer Chemotherapy. Pharmaceutics, 2021, 13, 1929.	4.5	8
79	PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomaterials Science and Engineering, 2022, 8, 2403-2418.	5.2	8
80	Supramolecular Functionalities Influence the Thermal Properties, Interactions and Conductivity Behavior of Poly(ethylene glycol)/LiAsF6 Blends. Polymers, 2013, 5, 937-953.	4.5	7
81	Supramolecular Polymer Networkâ€Mediated Selfâ€Assembly of Semicrystalline Polymers with Excellent Crystalline Performance. Macromolecular Rapid Communications, 2017, 38, 1600702.	3.9	7
82	Waterborne Polyurethane Colloids with Sensitive CO ₂ â€ 5 witchable Hydrophilic/Hydrophobic Properties. Macromolecular Chemistry and Physics, 2018, 219, 1800247.	2.2	7
83	Self-assembling supramolecular polymer membranes for highly effective filtration of water-soluble fluorescent dyes. Polymer Chemistry, 2019, 10, 827-834.	3.9	7
84	Two-Way CO ₂ -Responsive Polymer Particles with Controllable Amphiphilic Properties. ACS Omega, 2020, 5, 1862-1869.	3.5	6
85	Self-assembled nanoparticles formed <i>via</i> complementary nucleobase pair interactions between drugs and nanocarriers for highly efficient tumor-selective chemotherapy. Materials Chemistry Frontiers, 2021, 5, 5442-5451.	5.9	6
86	Manipulating the self-assembly behavior of graphene nanosheets via adenine-functionalized biodegradable polymers. Applied Surface Science, 2022, 572, 151437.	6.1	6
87	Synthesis of low surface-energy polyepichlorohydrin triazoles thin film. Journal of Colloid and Interface Science, 2019, 539, 481-489.	9.4	5
88	Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. International Journal of Molecular Sciences, 2022, 23, 4332.	4.1	5
89	Nucleobase-grafted supramolecular polymers for tuning the surface properties. Polymer Chemistry, 2014, 5, 702-705.	3.9	4
90	Supramolecular core–shell nanoparticles for photoconductive device applications. Nanotechnology, 2016, 27, 32LT01.	2.6	4

#	Article	IF	CITATIONS
91	Supramolecular Polymer Network-Mediated Structural Phase Transitions within Polymeric Micelles in Aliphatic Alcohols. ACS Macro Letters, 2019, 8, 1541-1545.	4.8	4
92	Polymer nanoparticles with a sensitive CO 2 â€responsive hydrophilic/hydrophobic surface. Journal of Polymer Science Part A, 2019, 57, 2149-2156.	2.3	4
93	Immobilization of Air-Stable Copper Nanoparticles on Graphene Oxide Flexible Hybrid Films for Smart Clothes. Polymers, 2022, 14, 237.	4.5	4
94	Adenineâ€Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy. Macromolecular Bioscience, 2020, 20, e2000233.	4.1	3
95	Photoreactive Cytosine-Functionalized Self-Assembled Micelles with Enhanced Cellular Uptake Capability for Efficient Cancer Chemotherapy. Biomacromolecules, 2021, 22, 5307-5318.	5.4	3
96	Controlling the Hierarchical Structures of Molybdenum Disulfide Nanomaterials via Self-Assembly of Supramolecular Polymers in Water. Chemistry of Materials, 2022, 34, 3333-3345.	6.7	2
97	Programmed exfoliation of hierarchical graphene nanosheets mediated by dynamic self-assembly of supramolecular polymers. Materials Chemistry Frontiers, 2021, 5, 6998-7011.	5.9	1
98	Inducing Silver Nanoparticles on Supramolecular Functionalized Boron Nitride Nanosheets for Photocatalytic Removal of Reactive Blue Dyes. Journal of Nanomaterials, 2022, 2022, 1-13.	2.7	0