
Christina Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3163607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	6.0	166
2	Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.	6.0	98
3	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	6.0	90
4	Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered. Solar Physics, 2011, 269, 367-388.	1.0	87
5	The MAVEN Solar Energetic Particle Investigation. Space Science Reviews, 2015, 195, 153-172.	3.7	79
6	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	0.8	78
7	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	1.5	77
8	LOW-LATITUDE CORONAL HOLES AT THE MINIMUM OF THE 23rd SOLAR CYCLE. Astrophysical Journal, 2010, 712, 813-818.	1.6	70
9	The Solar Wind at 1 AU During the Declining Phase ofÂSolar Cycle 23: Comparison of 3D Numerical Model Results with Observations. Solar Physics, 2009, 254, 155-183.	1.0	67
10	Solar Wind Sources in the Late Declining Phase ofÂCycleÂ23: Effects of the Weak Solar Polar Field onÂHighÂSpeed Streams. Solar Physics, 2009, 256, 285-305.	1.0	65
11	Ensemble Modeling of CME Propagation. Solar Physics, 2013, 285, 349-368.	1.0	54
12	Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period. Solar Physics, 2009, 256, 345-363.	1.0	51
13	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	1.5	44
14	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	0.8	40
15	The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability. Geophysical Research Letters, 2018, 45, 3356-3365.	1.5	39
16	Investigation of Martian Magnetic Topology Response to 2017 September ICME. Geophysical Research Letters, 2018, 45, 7337-7346.	1.5	39
17	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	1.5	38
18	Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather, 2017, 15, 934-954	1.3	35

CHRISTINA LEE

#	Article	IF	CITATIONS
19	Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017. Space Weather, 2018, 16, 557-568.	1.3	34
20	Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit. Astronomy and Astrophysics, 2018, 611, A79.	2.1	29
21	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophysical Research Letters, 2018, 45, 7248-7256.	1.5	29
22	Significant Space Weather Impact on the Escape of Hydrogen From Mars. Geophysical Research Letters, 2018, 45, 8844-8852.	1.5	29
23	Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Annales Geophysicae, 2011, 29, 1455-1467.	0.6	25
24	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	1.5	19
25	Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Timeâ€Dependent Simulation. Geophysical Research Letters, 2019, 46, 9334-9343.	1.5	19
26	Predicting the Magnetic Fields of a Stealth CME Detected by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2021, 920, 65.	1.6	17
27	Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics, 2016, 121, 2818-2829.	0.8	16
28	CMEs and SEPs During November–December 2020: A Challenge for Realâ€Time Space Weather Forecasting. Space Weather, 2022, 20, .	1.3	16
29	Ensemble Modeling of Successive Halo CMEs: A Case Study. Solar Physics, 2015, 290, 1207-1229.	1.0	14
30	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	1.5	14
31	The September 2017 SEP Event in Context With the Current Solar Cycle: Mars Express ASPERAâ€3/IMA and MAVEN/SEP Observations. Geophysical Research Letters, 2018, 45, 7306-7311.	1.5	14
32	Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase ofÂSolar Cycle 23. Solar Physics, 2010, 263, 239-261.	1.0	12
33	Phobos Surface Sputtering as Inferred From MAVEN Ion Observations. Journal of Geophysical Research E: Planets, 2019, 124, 3385-3401.	1.5	12
34	Energetic Particle Showers Over Mars from Comet C/2013 A1 Siding Spring. Journal of Geophysical Research: Space Physics, 2018, 123, 8778-8796.	0.8	11
35	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	0.8	10
36	A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5653-5669.	0.8	10

CHRISTINA LEE

#	Article	IF	CITATIONS
37	The Penetration of Draped Magnetic Field Into the Martian Upper Ionosphere and Correlations With Upstream Solar Wind Dynamic Pressure. Journal of Geophysical Research: Space Physics, 2019, 124, 3021-3035.	0.8	8
38	MAVEN SEP Observations of Scorpius Xâ€l Xâ€Rays at Mars: A Midatmosphere Occultation Analysis Technique. Geophysical Research Letters, 2020, 47, e2020GL088927.	1.5	8
39	Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	7
40	Radial evolution of the threeâ€dimensional structure in CIRs between Earth and Ulysses. Journal of Geophysical Research: Space Physics, 2013, 118, 4776-4792.	0.8	6
41	Test Particle Model Predictions of SEP Electron Transport and Precipitation at Mars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029132.	0.8	4
42	Recurrent Solar Energetic Particle Flux Enhancements Observed near Earth and Mars. Astrophysical Journal, 2020, 902, 13.	1.6	4
43	Interplanetary conditions: lessons from this minimum. Proceedings of the International Astronomical Union, 2011, 7, 168-178.	0.0	3
44	The Effects of Solar Wind Structure on Nanodust Dynamics in the Inner Heliosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028463.	0.8	3
45	Statistical Similarities Between WSAâ€ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016. Space Weather, 2018, 16, 157-171.	1.3	2
46	A Generalized Magnetospheric Disturbance Index: Initial Application to Mars Using MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029479.	0.8	2
47	Ensemble modeling of successive halo CMEs observed during 2-4 Aug 2011. , 2013, , .		1
48	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0
49	The Effects of Solar Cycle Variability on Nanodust Dynamics in the Inner Heliosphere: Predictions for Future STEREO A/WAVES Measurements. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	0