Bing Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3162826/publications.pdf Version: 2024-02-01

RINC YAN

#	Article	IF	CITATIONS
1	Catalytic Oxidative Carbonylation over Cu ₂ O Nanoclusters Supported on Carbon Materials: The Role of the Carbon Support. ChemCatChem, 2014, 6, 2671-2679.	3.7	39
2	Cu-doped zeolites for catalytic oxidative carbonylation: The role of BrÃ,nsted acids. Applied Catalysis A: General, 2012, 417-418, 236-242.	4.3	37
3	Constructing a high-efficiency iron-based catalyst for carbon dioxide oxidative dehydrogenation of 1-butene: The role of oxygen mobility and proposed reaction mechanism. Applied Catalysis A: General, 2019, 572, 71-79.	4.3	20
4	Ordered mesoporous carbons supported wackerâ€ŧype catalyst for catalytic oxidative carbonylation. AICHE Journal, 2013, 59, 3797-3805.	3.6	15
5	Enhanced Carbon Dioxide Oxidative Dehydrogenation of 1â€Butene by Ironâ€Doped Ordered Mesoporous Alumina. ChemCatChem, 2017, 9, 4480-4483.	3.7	13
6	Catalytic oxidative dehydrogenation of 1-butene to 1,3-butadiene with CO2 over Fe2O3/γ-Al2O3 catalysts: the effect of acid or alkali modification. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 451-462.	1.7	10
7	DFT and DRIFTS studies of the oxidative carbonylation of methanol over Î ³ -Cu2Cl(OH)3: the influence of Cl. RSC Advances, 2012, 2, 8752.	3.6	7
8	Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant. Journal of Porous Materials, 2019, 26, 1269-1277.	2.6	7
9	Carbon material-supported Fe7C3@FeO nanoparticles: a highly efficient catalyst for carbon dioxide reduction with 1-butene. Reaction Chemistry and Engineering, 2020, 5, 2101-2108.	3.7	2
10	Highly Selective Conversion of 1â€Butene to 1,3â€Butadiene under CO 2 Atmosphere over an Aluminaâ€supported Ironâ€based Catalyst: The Role of BrÃ,nsted Acids and Lewis Acids. ChemistrySelect, 2020, 5, 11237-11241.	1.5	1