List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3162478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation Analysis of Pt/Nb–Ti ₄ 0 ₇ as PEFC Cathode Catalysts with Controlled Arc Plasma-deposited Platinum Content. Electrochemistry, 2022, 90, 057004-057004.	0.6	2
2	Fluoride Ion-Encapsulated Germoxane Cages Modified with Organosiloxane Chains as Anionic Components of Ionic Liquids. Organometallics, 2022, 41, 1454-1463.	1.1	4
3	Synthesis of Cristobalite Containing Ordered Interstitial Mesopores using Crystallization of Silica Colloidal Crystals. Chemistry - an Asian Journal, 2021, 16, 207-214.	1.7	1
4	Direct bottom-up synthesis of size-controlled monodispersed single-layer magnesium hydroxide nanosheets modified with tripodal ligands. Dalton Transactions, 2021, 50, 3121-3126.	1.6	5
5	Variation of counter quaternary ammonium cations of anionic cage germanoxanes as building blocks of nanoporous materials. Dalton Transactions, 2021, 50, 8497-8505.	1.6	4
6	Preparation of Ordered Nanoporous Indium Tin Oxides with Large Crystallites and Individual Control over Their Thermal and Electrical Conductivities. ACS Applied Materials & Interfaces, 2021, 13, 15373-15382.	4.0	8
7	Preparation of Colloidal Monodisperse Hollow Organosiloxane-Based Nanoparticles with a Double Mesoporous Shell. Bulletin of the Chemical Society of Japan, 2021, 94, 1602-1608.	2.0	2
8	Formation of Closed Pores in Mesoporous Silica Nanoparticles by Hydrothermal Treatment. Bulletin of the Chemical Society of Japan, 2021, 94, 1625-1630.	2.0	3
9	Interlayer Silylation of Layered Octosilicate with Organoalkoxysilanes: Effects of Tetrabutylammonium Fluoride as a Catalyst and the Functional Groups of Silanes. European Journal of Inorganic Chemistry, 2021, 2021, 1836-1845.	1.0	4
10	Preparation of an Ordered Nanoporous Silicone-based Material Using Silica Colloidal Crystals as a Hard Template. Chemistry Letters, 2021, 50, 1038-1040.	0.7	3
11	Hydrolysis of Methoxylated Nickel Hydroxide Leading to Single-Layer Ni(OH) ₂ Nanosheets. Inorganic Chemistry, 2021, 60, 7094-7100.	1.9	3
12	Self-Healing Lamellar Silsesquioxane Thin Films. ACS Applied Polymer Materials, 2021, 3, 4118-4126.	2.0	6
13	One-step Synthesis of Nanoporous Titanosiloxane-based Materials with Isolated Ti Sites Using Cage Siloxane as a Building Block. Chemistry Letters, 2021, 50, 1643-1647.	0.7	3
14	Hydrogen-bonding-induced Layered Assembly of Cage Siloxanes Modified with Diisopropylsilanol Groups. Chemistry Letters, 2021, 50, 1770-1772.	0.7	3
15	Preparation of periodic mesoporous organosilica with large mesopores using silica colloidal crystals as templates. Nanoscale, 2020, 12, 21155-21164.	2.8	13
16	Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized <i>via</i> an alternative interfacial reaction and low-pressure SPS processing. Inorganic Chemistry Frontiers, 2020, 7, 4118-4132.	3.0	46
17	Preparation of Sub-50 nm Colloidal Monodispersed Hollow Siloxane-Based Nanoparticles with Controlled Shell Structures. Langmuir, 2020, 36, 13833-13842.	1.6	4
18	Mesoporous Silica Nanoparticles with Dispersibility in Organic Solvents and Their Versatile Surface Modification. Langmuir, 2020, 36, 5571-5578.	1.6	14

#	Article	IF	CITATIONS
19	Development of mesopore-containing CON-type zeolite with unique acidic and catalytic properties. Catalysis Science and Technology, 2020, 10, 4293-4304.	2.1	5
20	Selective Covalent Modification of Layered Double Hydroxide Nanoparticles with Tripodal Ligands on Outer and Interlayer Surfaces. Inorganic Chemistry, 2020, 59, 6110-6119.	1.9	13
21	Preparation of Porous Pentacoordinate Organosilicon Frameworks Using Organoalkoxysilanes and Tris-catechol Linkers. Chemistry Letters, 2020, 49, 1075-1077.	0.7	4
22	Alkoxy- and Silanol-Functionalized Cage-Type Oligosiloxanes as Molecular Building Blocks to Construct Nanoporous Materials. Molecules, 2020, 25, 524.	1.7	18
23	Inorganic–Organic Hybrid Photomechanical Crystals of Azobenzene-modified Polyhedral Oligomeric Silsesquioxane (POSS). Chemistry Letters, 2020, 49, 327-329.	0.7	4
24	Encapsulation of Cu nanoparticles in nanovoids of plate-like silica sodalite through interlayer condensation of Cu ²⁺ ion-exchanged layered silicate RUB-15. Dalton Transactions, 2020, 49, 8067-8074.	1.6	3
25	Preparation of CO2-adsorbable amine-functionalized polysilsesquioxanes containing cross-linked structures without using surfactants and strong acid or base catalysts. Journal of Sol-Gel Science and Technology, 2019, 91, 505-513.	1.1	6
26	Formation of silicate nanoscrolls through solvothermal treatment of layered octosilicate intercalated with organoammonium ions. Nanoscale, 2019, 11, 12924-12931.	2.8	5
27	Inorganic–Organic Hybrid Photomechanical Crystals Consisting of Diarylethenes and Cage Siloxanes. Chemistry of Materials, 2019, 31, 9372-9378.	3.2	21
28	Synthesis and crystal structure of double-three ring (D3R)-type cage siloxanes modified with dimethylsilanol groups. Dalton Transactions, 2019, 48, 1969-1975.	1.6	7
29	Synthesis of Organosilylâ€Functionalized Cageâ€Type Germanoxanes Containing Fluoride Ions. Chemistry - A European Journal, 2019, 25, 7776-7776.	1.7	0
30	Synthesis of Organosilylâ€Functionalized Cageâ€Type Germanoxanes Containing Fluoride Ions. Chemistry - A European Journal, 2019, 25, 7860-7865.	1.7	8
31	Synthesis of Polycyclic and Cage Siloxanes by Hydrolysis and Intramolecular Condensation of Alkoxysilylated Cyclosiloxanes. Chemistry - A European Journal, 2019, 25, 2764-2772.	1.7	15
32	Fabrication of Uniaxially Aligned Silica Nanogrooves with Sub-5 nm Periodicity on Centimeter-Scale Si Substrate Using Poly(dimethylsiloxane) Stamps. ACS Nano, 2019, 13, 2795-2803.	7.3	6
33	Polymerization of Cyclododecasiloxanes with Si–H and Si–OEt Side Groups by the Piers-Rubinsztajn Reaction. Bulletin of the Chemical Society of Japan, 2018, 91, 747-753.	2.0	15
34	Transformation of Mesostructured Silica Nanoparticles into Colloidal Hollow Nanoparticles in the Presence of a Bridged-Organosiloxane Shell. Chemistry of Materials, 2018, 30, 540-548.	3.2	22
35	Formation of Single-Digit Nanometer Scale Silica Nanoparticles by Evaporation-Induced Self-Assembly. Langmuir, 2018, 34, 1711-1717.	1.6	9
36	Formation of Concentric Silica Nanogrooves Guided by the Curved Surface of Silica Particles. Langmuir, 2018, 34, 1733-1741.	1.6	3

#	Article	IF	CITATIONS
37	<i>In situ</i> synthesis of magnesium hydroxides modified with tripodal ligands in an organic medium. Dalton Transactions, 2018, 47, 3074-3083.	1.6	10
38	Preparation of Ordered Mesoporous Au using Double Gyroid Mesoporous Silica KITâ€6 via a Seedâ€Mediated Growth Process. Chemistry - an Asian Journal, 2018, 13, 3935-3941.	1.7	8
39	Preparation of Siloxaneâ€Based Microporous Crystals from Hydrogenâ€Bonded Molecular Crystals of Cage Siloxanes. Chemistry - A European Journal, 2018, 24, 17033-17038.	1.7	21
40	Self-assembly of Cyclohexasiloxanes Possessing Alkoxysilyl Groups and Long Alkyl Chains. Chemistry Letters, 2018, 47, 1203-1206.	0.7	7
41	Synthesis of Zeolitic Macrocycles Using Site-Selective Condensation of Regioselectively Difunctionalized Cubic Siloxanes. Inorganic Chemistry, 2018, 57, 14686-14691.	1.9	11
42	Preparation and Controllability of Mesoporous Silica Nanoparticles. The Enzymes, 2018, 44, 1-10.	0.7	11
43	Formation of Silica–Organic Hybrid Nanoparticles by Cross-linking of Ultra-small Silica Nanoparticles. Chemistry Letters, 2018, 47, 1018-1021.	0.7	3
44	Precise size control of layered double hydroxide nanoparticles through reconstruction using tripodal ligands. Dalton Transactions, 2018, 47, 12884-12892.	1.6	24
45	Direct Synthesis of Highly Designable Hybrid Metal Hydroxide Nanosheets by Using Tripodal Ligands as Oneâ€Sizeâ€Fitsâ€All Modifiers. Chemistry - A European Journal, 2017, 23, 5023-5032.	1.7	24
46	Direct Synthesis of Highly Designable Hybrid Metal Hydroxide Nanosheets by Using Tripodal Ligands as One-Size-Fits-All Modifiers. Chemistry - A European Journal, 2017, 23, 4949-4949.	1.7	1
47	Formation of Nanogrooves with Sub-5 nm Periodicity Using Local Silicification at the Interspace between a Si Substrate and Lyotropic Liquid Crystals. ACS Nano, 2017, 11, 5160-5166.	7.3	10
48	Preparation of Mesoporous Basic Oxides through Assembly of Monodispersed Mg–Al Layered Double Hydroxide Nanoparticles. Chemistry - A European Journal, 2017, 23, 9362-9368.	1.7	29
49	Pore Clogging of Colloidal Mesoporous Silica Nanoparticles for Encapsulating Guest Species. Bulletin of the Chemical Society of Japan, 2017, 90, 706-708.	2.0	5
50	Thickness control of 3-dimensional mesoporous silica ultrathin films by wet-etching. Nanoscale, 2017, 9, 8321-8329.	2.8	11
51	Synthesis of a Singleâ€Crystalline Macroporous Layered Silicate from a Macroporous UTLâ€Type Zeolite and Its Accelerated Intercalation. Chemistry - A European Journal, 2017, 23, 11022-11029.	1.7	3
52	Topotactic conversion of layered silicate RUB-15 to silica sodalite through interlayer condensation in N-methylformamide. Dalton Transactions, 2017, 46, 10232-10239.	1.6	9
53	Role of Cubic Siloxane Cages in Mesostructure Formation and Photoisomerization of Azobenzene–Siloxane Hybrid. Chemistry Letters, 2017, 46, 1237-1239.	0.7	13
54	Direct Observation of the Outermost Surfaces of Mesoporous Silica Thin Films by High Resolution Ultralow Voltage Scanning Electron Microscopy. Langmuir, 2017, 33, 2148-2156.	1.6	9

#	Article	IF	CITATIONS
55	Protecting and Leaving Functions of Trimethylsilyl Groups in Trimethylsilylated Silicates for the Synthesis of Alkoxysiloxane Oligomers. Angewandte Chemie, 2017, 129, 14178-14182.	1.6	8
56	Synthesis of a 12-membered cyclic siloxane possessing alkoxysilyl groups as a nanobuilding block and its use for preparation of gas permeable membranes. RSC Advances, 2017, 7, 48683-48691.	1.7	11
57	Spontaneous Crack Healing in Nanostructured Silica-Based Thin Films. ACS Nano, 2017, 11, 10289-10294.	7.3	14
58	Nanospace-Mediated Self-Organization of Nanoparticles in Flexible Porous Polymer Templates. Langmuir, 2017, 33, 9137-9143.	1.6	6
59	Protecting and Leaving Functions of Trimethylsilyl Groups in Trimethylsilylated Silicates for the Synthesis of Alkoxysiloxane Oligomers. Angewandte Chemie - International Edition, 2017, 56, 13990-13994.	7.2	15
60	Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. Nanoscale, 2017, 9, 2464-2470.	2.8	30
61	Construction of Siloxane-based Porous Materials by Using Cage-type Element Blocks. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 126-129.	0.1	Ο
62	A Single rystalline Mesoporous Quartz Superlattice. Angewandte Chemie - International Edition, 2016, 55, 6008-6012.	7.2	11
63	Cubic Siloxanes with Both Siâ^'H and Siâ^'Ot Bu Groups for Site-Selective Siloxane Bond Formation. Chemistry - A European Journal, 2016, 22, 13737-13737.	1.7	Ο
64	A photoresponsive azobenzene-bridged cubic silsesquioxane network. Journal of Sol-Gel Science and Technology, 2016, 79, 262-269.	1.1	7
65	Selective Formation of Alkoxychlorosilanes and Organotrialkoxysilane with Four Different Substituents by Intermolecular Exchange Reaction. Chemistry - an Asian Journal, 2016, 11, 3225-3233.	1.7	8
66	A Mesoporous Superlattice Consisting of Alternately Stacking Interstitial Nanospace within Binary Silica Colloidal Crystals. Angewandte Chemie - International Edition, 2016, 55, 10702-10706.	7.2	4
67	A Mesoporous Superlattice Consisting of Alternately Stacking Interstitial Nanospace within Binary Silica Colloidal Crystals. Angewandte Chemie, 2016, 128, 10860-10864.	1.6	Ο
68	Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan, 2016, 89, 501-539.	2.0	183
69	Cubic Siloxanes with Both Siâ^'H and Siâ^'O t Bu Groups for Siteâ€Selective Siloxane Bond Formation. Chemistry - A European Journal, 2016, 22, 13857-13864.	1.7	14
70	Usefulness of Mesoporous Silica as a Template for the Preparation of Bundles of Bi Nanowires with Precisely Controlled Diameter Below 10â€nm. Chemistry - an Asian Journal, 2016, 11, 900-905.	1.7	5
71	Interlayer Condensation of Protonated Layered Silicate Magadiite through Refluxing in <i>N</i> -Methylformamide. Bulletin of the Chemical Society of Japan, 2015, 88, 1241-1249.	2.0	7
72	Relationship between Aggregated Structures and Dispersibility of Layered Double Hydroxide Nanoparticles ca. 10 nm in Size and Their Application to Ultrafast Removal of Aqueous Anionic Dye. Bulletin of the Chemical Society of Japan, 2015, 88, 1765-1772.	2.0	14

#	Article	IF	CITATIONS
73	Si Substrate as a SiO2 Source for the Preparation of Mesoporous SiO2–TiO2 Thin Films. Chemistry Letters, 2015, 44, 372-374.	0.7	1
74	Proton tunneling in low dimensional cesium silicate LDS-1. Journal of Chemical Physics, 2015, 143, 024503.	1.2	5
75	Preparation of Mesoporous Bimetallic Au–Pt with a Phaseâ€ S egregated Heterostructure Using Mesoporous Silica. Chemistry - A European Journal, 2015, 21, 19142-19148.	1.7	4
76	The Critical Effect of Niobium Doping on the Formation of Mesostructured TiO ₂ : Singleâ€Crystalline Ordered Mesoporous Nbâ€TiO ₂ and Plateâ€like Nbâ€TiO ₂ with Ordered Mesoscale Dimples. Chemistry - A European Journal, 2015, 21, 13073-13079.	1.7	14
77	Effective Use of Alkoxysilanes with Different Hydrolysis Rates for Particle Size Control of Aqueous Colloidal Mesostructured and Mesoporous Silica Nanoparticles by the Seedâ€Growth Method. ChemNanoMat, 2015, 1, 194-202.	1.5	9
78	Regular assembly of cage siloxanes by hydrogen bonding of dimethylsilanol groups. Chemical Communications, 2015, 51, 11034-11037.	2.2	35
79	Mesoporous TiO ₂ films with regularly aligned slit-like nanovoids. Journal of Materials Chemistry C, 2015, 3, 3869-3875.	2.7	10
80	A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Nanoscale, 2015, 7, 19557-19567.	2.8	34
81	Photoinduced Bending of Self-Assembled Azobenzene–Siloxane Hybrid. Journal of the American Chemical Society, 2015, 137, 15434-15440.	6.6	99
82	Topotactic Conversion of βâ€Helix‣ayered Silicate into ASTâ€Type Zeolite through Successive Interlayer Modifications. Chemistry - A European Journal, 2014, 20, 1893-1900.	1.7	26
83	Innentitelbild: Molecularly Designed Nanoparticles by Dispersion of Self-Assembled Organosiloxane-Based Mesophases (Angew. Chem. 35/2014). Angewandte Chemie, 2014, 126, 9246-9246.	1.6	0
84	Utilization of Alkoxysilyl Groups for the Creation of Structurally Controlled Siloxane-Based Nanomaterials. Chemistry of Materials, 2014, 26, 211-220.	3.2	90
85	Preparation of highly controlled nanostructured Au within mesopores using reductive deposition in non-polar environments. RSC Advances, 2014, 4, 27201-27206.	1.7	12
86	Critical Roles of Cationic Surfactants in the Preparation of Colloidal Mesostructured Silica Nanoparticles: Control of Mesostructure, Particle Size, and Dispersion. ACS Applied Materials & Interfaces, 2014, 6, 3491-3500.	4.0	69
87	Optimal topotactic conversion of layered octosilicate to RWR-type zeolite by separating the formation stages of interlayer condensation and elimination of organic guest molecules. Dalton Transactions, 2014, 43, 10392-10395.	1.6	16
88	Silylation of Layered Silicate RUB-51 with SiCl ₄ and Conversion of the Silylated Derivative to a Crystalline Microporous Material. Chemistry of Materials, 2014, 26, 3796-3803.	3.2	18
89	Synthesis of a multifunctional alkoxysiloxane oligomer. New Journal of Chemistry, 2014, 38, 5362-5368.	1.4	13
90	Preparation of Size-Controlled Monodisperse Colloidal Mesoporous Silica Nanoparticles and Fabrication of Colloidal Crystals. Chemistry of Materials, 2014, 26, 2927-2933.	3.2	58

#	Article	IF	CITATIONS
91	Molecularly Designed Nanoparticles by Dispersion of Selfâ€Assembled Organosiloxaneâ€Based Mesophases. Angewandte Chemie - International Edition, 2014, 53, 9173-9177.	7.2	7
92	Replication of Ordered Mesostructure on the Surface of 2D Hexagonal Mesoporous Silica Film as Exemplified by the Formation of Striped Cu Nanopatterns. Chemistry Letters, 2014, 43, 846-848.	0.7	5
93	Developments in Silica-Based Nanoporous Materials. Bulletin of Japan Society of Coordination Chemistry, 2014, 64, 2-13.	0.1	Ο
94	Siloxaneâ€Bond Formation Promoted by Lewis Acids: A Nonhydrolytic Sol–Gel Process and the Piers–Rubinsztajn Reaction. ChemPlusChem, 2013, 78, 764-774.	1.3	33
95	A novel route for preparation of Ti-containing mesoporous silica with high catalytic performance by using a molecular precursor tetrakis(tris-tert-butoxysiloxy)titanium. Journal of Materials Chemistry A, 2013, 1, 2485.	5.2	25
96	Lattice Matching in the Epitaxial Formation of Mesostructured Silica Films. Langmuir, 2013, 29, 761-765.	1.6	14
97	Exfoliation of Layered Octosilicate by Simple Cation Exchange with Didecyldimethylammonium Ions. Chemistry Letters, 2013, 42, 80-82.	0.7	25
98	Selective Cleavage of Periodic Mesoscale Structures: Two-Dimensional Replication of Binary Colloidal Crystals into Dimpled Gold Nanoplates. Journal of the American Chemical Society, 2012, 134, 8684-8692.	6.6	34
99	Polymorph Control of Calcium Carbonate on the Surface of Mesoporous Silica. Crystal Growth and Design, 2012, 12, 887-893.	1.4	20
100	Direct alkoxysilylation of alkoxysilanes for the synthesis of explicit alkoxysiloxane oligomers. Journal of Organometallic Chemistry, 2012, 716, 26-31.	0.8	15
101	Preparation of Au Nanowire Films by Electrodeposition Using Mesoporous Silica Films as a Template: Vital Effect of Vertically Oriented Mesopores on a Substrate. Journal of Physical Chemistry C, 2012, 116, 24672-24680.	1.5	38
102	Preparation of Colloidal Mesoporous Silica Nanoparticles with Different Diameters and Their Unique Degradation Behavior in Static Aqueous Systems. Chemistry of Materials, 2012, 24, 1462-1471.	3.2	250
103	A spherosilicate oligomer with eight stable silanol groups as a building block of hybrid materials. New Journal of Chemistry, 2012, 36, 1210.	1.4	16
104	Exfoliation of Layered Silicates through Immobilization of Imidazolium Groups. Chemistry of Materials, 2011, 23, 266-273.	3.2	49
105	One-Step Exfoliation of Kaolinites and Their Transformation into Nanoscrolls. Langmuir, 2011, 27, 2028-2035.	1.6	151
106	Preparation of mesostructured silica–micelle hybrids and their conversion to mesoporous silica modified controllably with immobilized hydrophobic blocks by using triethoxysilyl-terminated PEO–PPO–PEO triblock copolymer. Journal of Materials Chemistry, 2011, 21, 3711.	6.7	8
107	Aqueous Colloidal Mesoporous Nanoparticles with Ethenylene-Bridged Silsesquioxane Frameworks. Journal of the American Chemical Society, 2011, 133, 8102-8105.	6.6	170
108	Double function of tris(hydroxymethyl)aminomethane (THAM) for the preparation of colloidal silica nanospheres and the conversion to ordered mesoporous carbon. Chemical Communications, 2011, 47, 10933.	2.2	24

#	Article	IF	CITATIONS
109	Ordered Silylation of Layered Silicate RUB-51 with Half-Sodalite Cages. Bulletin of the Chemical Society of Japan, 2011, 84, 968-975.	2.0	13
110	Materials design of layered silicates through covalent modification of interlayer surfaces. Journal of Materials Chemistry, 2011, 21, 14336.	6.7	159
111	Synthesis of mesostructured silica from monoalkyl-substituted double five-ring units. Journal of Sol-Gel Science and Technology, 2011, 57, 263-268.	1.1	17
112	Nonhydrolytic Synthesis of Branched Alkoxysiloxane Oligomers Si[OSiH(OR) ₂] ₄ (R=Me, Et). Angewandte Chemie - International Edition, 2010, 49, 5273-5277.	7.2	50
113	Morphosynthesis of Nanostructured Gold Crystals by Utilizing Interstices in Periodically Arranged Silica Nanoparticles as a Flexible Reaction Field. Angewandte Chemie - International Edition, 2010, 49, 6993-6997.	7.2	46
114	Tailored synthesis of mesoporous platinum replicas using double gyroid mesoporous silica (KIT-6) with different pore diameters via vapor infiltration of a reducing agent. Chemical Communications, 2010, 46, 6365.	2.2	77
115	Interlayer modification of a layered H-octosilicate (H-RUB-18) with methanol: formation of a highly ordered organosilicate nanohybrid. Journal of Materials Chemistry, 2010, 20, 3202.	6.7	21
116	Anion Exchangeable Layered Silicates Modified with Ionic Liquids on the Interlayer Surface. Chemistry of Materials, 2010, 22, 3340-3348.	3.2	45
117	Soft-Chemical Approach of Noble Metal Nanowires Templated from Mesoporous Silica (SBA-15) through Vapor Infiltration of a Reducing Agent. Journal of Physical Chemistry C, 2010, 114, 7586-7593.	1.5	68
118	Preparation of lamellar inorganic–organic hybrids from tetraethoxysilane and a coumarin derivative containing a triethoxysilyl group and photodimerization of the interlayer coumarin groups. Journal of Materials Chemistry, 2010, 20, 6688.	6.7	9
119	Integrated structural control of cage-type mesoporous platinum possessing both tunable large mesopores and variable surface structures by block copolymer-assisted Pt deposition in a hard-template. Chemical Communications, 2010, 46, 1827-1829.	2.2	57
120	Ordered Mesoporous Silica Derived from Layered Silicates. Advanced Functional Materials, 2009, 19, 511-527.	7.8	63
121	Formation of Two- and Three-Dimensional Hybrid Mesostructures from Branched Siloxane Molecules. Journal of the American Chemical Society, 2009, 131, 9634-9635.	6.6	43
122	Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chemical Communications, 2009, , 5094.	2.2	113
123	Properties of metal species in square-shape mesopores of KSW-2-based silica. Journal of Materials Chemistry, 2009, 19, 3859.	6.7	9
124	Facile formation of single crystalline Pt nanowires on a substrate utilising lyotropic liquid crystals consisting of cationic surfactants. Journal of Materials Chemistry, 2009, 19, 4205.	6.7	10
125	Facile patterning of assembled silica nanoparticles with a closely packed arrangement through guided growth. Journal of Materials Chemistry, 2009, 19, 1964.	6.7	16
126	Selfâ€Assembly of Alkyl‣ubstituted Cubic Siloxane Cages into Ordered Hybrid Materials. Chemistry - A European Journal, 2008, 14, 8500-8506.	1.7	66

#	Article	IF	CITATIONS
127	Exploration of a Standing Mesochannel System with Antimatter/Matter Atomic Probes. Advanced Materials, 2008, 20, 4728-4733.	11.1	16
128	Oligomeric Alkoxysilanes with Cagelike Hybrids as Cores: Designed Precursors of Nanohybrid Materials. Chemistry - an Asian Journal, 2008, 3, 600-606.	1.7	16
129	Rational Design of Mesoporous Metals and Related Nanomaterials by a Softâ€∓emplate Approach. Chemistry - an Asian Journal, 2008, 3, 664-676.	1.7	252
130	A hybrid mesoporous material with uniform distribution of carboxy groups assembled from a cubic siloxane-based precursor. Chemical Communications, 2008, , 6152.	2.2	36
131	Alkoxysilylated-Derivatives of Double-Four-Ring Silicate as Novel Building Blocks of Silica-Based Materials. Chemistry of Materials, 2008, 20, 1147-1153.	3.2	78
132	Organic derivatives of the layered perovskite HLaNb2O7·xH2O with polyether chains on the interlayer surface: characterization, intercalation of LiClO4, and ionic conductivity. Journal of Materials Chemistry, 2008, 18, 3581.	6.7	26
133	Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 2008, 18, 3193.	6.7	18
134	Phenylene-bridged mesoporous organosilica films with uniaxially aligned mesochannels. Journal of Materials Chemistry, 2008, 18, 1239.	6.7	14
135	Layer-by-layer assembly of imogolite nanotubes and polyelectrolytes into core-shell particles and their conversion to hierarchically porous spheres. Science and Technology of Advanced Materials, 2008, 9, 025018.	2.8	20
136	Magnetically induced orientation of mesochannels inside porous anodic alumina membranes under ultra high magnetic field of 30 T: Confirmation by TEM. Journal of the Ceramic Society of Japan, 2008, 116, 1244-1248.	0.5	12
137	Deposition of single-crystalline mesoporous silica particles and the in-plane arrangement of mesocages over particles on a cleaved mica surface. Journal of Materials Chemistry, 2007, 17, 4762.	6.7	6
138	Structure and properties of multilayered siloxane–organic hybrid films prepared using long-chain organotrialkoxysilanes containing C double bonds. Journal of Materials Chemistry, 2007, 17, 658-663.	6.7	34
139	Intercalation of Poly(oxyethylene) Alkyl Ether into a Layered Silicate Kanemite. Langmuir, 2007, 23, 10765-10771.	1.6	11
140	Orientational Control of Hexagonally Packed Silica Mesochannels in Lithographically Designed Confined Nanospaces. Angewandte Chemie - International Edition, 2007, 46, 5364-5368.	7.2	52
141	Synthesis of Microporous Inorganicâ~'Organic Hybrids from Layered Octosilicate by Silylation with 1,4-Bis(trichloro- and dichloromethyl-silyl)benzenes. Chemistry of Materials, 2006, 18, 5223-5229.	3.2	54
142	Design of silicate nanostructures by interlayer alkoxysilylation of layered silicates (magadiite and) Tj ETQq0 0 0 rg	BT /Overlo 1.4	ocg 10 Tf 50

143	Surfactant-free synthesis of lamellar and wormhole-like silica mesostructures by using 1-alkynyltrimethoxysilanes. Journal of Materials Chemistry, 2006, 16, 986.	6.7	18
144	Magnetically induced orientation of mesochannels in 2D-hexagonal mesoporous silica films. Journal of Materials Chemistry, 2006, 16, 3693.	6.7	61

#	Article	IF	CITATIONS
145	Synthesis and characterization of mesoporous Pt–Ni (Hl–Pt/Ni) alloy particles prepared from lyotropic liquid crystalline media. Journal of Materials Chemistry, 2006, 16, 2229-2234.	6.7	34
146	Designed synthesis of nanostructured siloxane–organic hybrids from amphiphilic silicon-based precursors. Chemical Record, 2006, 6, 53-63.	2.9	165
147	Development of microfabrication process of mesoporous Pt via "Solvent-Evaporation-Mediated Direct Physical Castingâ€+ Selective deposition into sloped microchannels. Science and Technology of Advanced Materials, 2006, 7, 438-445.	2.8	23
148	Layered assembly of alkoxy-substituted bis(trichlorosilanes) containing various organic bridges via hydrolysis of Si–Cl groups. Journal of Materials Chemistry, 2005, 15, 5151.	6.7	14
149	Synthesis of Thermally Stable and 2-D Hexagonal Super-Microporous Silica from Hydrated α-Sodium Disilicate. Chemistry of Materials, 2005, 17, 6416-6421.	3.2	29
150	Energy Transfer between Chlorophyll Derivatives in Silica Mesostructured Films and Photocurrent Generation. Langmuir, 2005, 21, 3992-3997.	1.6	27
151	Orientation of mesochannels in continuous mesoporous silica films by a high magnetic field. Journal of Materials Chemistry, 2005, 15, 1137.	6.7	99
152	Molecular Manipulation of Two- and Three-Dimensional Silica Nanostructures by Alkoxysilylation of a Layered Silicate Octosilicate and Subsequent Hydrolysis of Alkoxy Groups. Journal of the American Chemical Society, 2005, 127, 7183-7191.	6.6	74
153	Highly ordered mesostructured Ni particles prepared from lyotropic liquid crystals by electroless deposition: the effect of reducing agents on the ordering of mesostructure. Journal of Materials Chemistry, 2005, 15, 1987.	6.7	73
154	Self-Assembly of Designed Oligomeric Siloxanes with Alkyl Chains into Silica-Based Hybrid Mesostructures. Journal of the American Chemical Society, 2005, 127, 14108-14116.	6.6	116
155	Adsorption of Alcohols from Aqueous Solutions into a Layered Silicate Modified with Octyltrichlorosilane. Chemistry of Materials, 2005, 17, 3717-3722.	3.2	64
156	Silica films with a single-crystalline mesoporous structure. Nature Materials, 2004, 3, 651-656.	13.3	145
157	Fabrication of magnetic mesostructured nickel–cobalt alloys from lyotropic liquid crystalline media by electroless deposition. Journal of Materials Chemistry, 2004, 14, 2935-2940.	6.7	65
158	Selective formation of siloxane-based hybrid cages with methylene groups in the frameworks. Chemical Communications, 2004, , 2672.	2.2	14
159	Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dyeElectronic supplementary information (ESI) available: XRD patterns of (a) the starting material Na2Ti3O7, (b) H/Ti3O7, (c) MA/Ti3O7 and (d) PA/Ti3O7. See http://www.rsc.org/suppdata/im/b3/b308800f/ . Journal of Materials Chemistry, 2004, 14, 165.	6.7	96
160	Direct Formation of Mesostructured Silica-Based Hybrids from Novel Siloxane Oligomers with Long Alkyl Chains. Angewandte Chemie - International Edition, 2003, 42, 4057-4060.	7.2	122
161	Synthesis of Interlamellar Silylated Derivatives of Magadiite and the Adsorption Behavior for Aliphatic Alcohols. Chemistry of Materials, 2003, 15, 3134-3141.	3.2	86
162	Organic modification of the interlayer surface of kaolinite with propanediols by transesterificationElectronic supplementary information (ESI) available: Fig. S1: XRD patterns of (A) methoxy-modified kaolinite, (B) Kao–1,3PDint, (C) Kao–1,3PDint washed by ethanol, (D) Kao–1,3PDgraft and (E) Kao–1,3PDgraft washed by ethanol. See http://www.rsc.org/suppdata/jm/b2/b211844k/. Journal of Materials Chemistry, 2003, 13, 1064-1068.	6.7	60

#	ARTICLE	IF	CITATIONS
163	Al into the framework of kanemiteElectronic supplementary information (ESI) available: powder XRD patterns and 29Si MAS NMR spectra of kanemite and Al-kanemite, N2 adsorption isotherm of Al-KSW-2, TEM images of Al-KSW-2. See http://www.rsc.org/suppdata/jm/b2/b211073c/. Journal of Materials	6.7	19
164	Intercalation of 8-hydroxyquinoline into a1-smectites by solid-solid reactions. Clays and Clay Minerals, 2002, 50, 428-434.	0.6	33
165	PREPARATION AND CHARACTERIZATION OF Eu-MAGADIITE INTERCALATION COMPOUNDS. Clays and Clay Minerals, 2002, 50, 799-806.	0.6	34
166	Formation of a New Crystalline Silicate Structure by Grafting Dialkoxysilyl Groups on Layered Octosilicate. Journal of the American Chemical Society, 2002, 124, 12082-12083.	6.6	60
167	Preparation of Mesoporous Silica Films with Fully Aligned Large Mesochannels Using Nonionic Surfactants. Chemistry of Materials, 2002, 14, 766-772.	3.2	104
168	Intercalation of cationic phthalocyanines into layered titanates and control of the microstructuresElectronic supplementary information (ESI) available: CHN analytical data and amounts of PA and Pc intercalated in Ti3O7 (Table S1), and XRD patterns of products derived from H2Ti3O7 (Fig. S1). See http://www.rsc.org/suppdata/jm/b2/b210237b/. Journal of Materials Chemistry, 2002, 12, 3463-3468	6.7	24
169	Conversion of a Precursor Derived from Cageâ€Type and Cyclic Molecular Building Blocks into Alâ€Siâ€Nâ€C Ceramic Composites. Journal of the American Ceramic Society, 2002, 85, 59-64.	1.9	20
170	Synthesis of a kaolinite–poly(β-alanine) intercalation compound. Journal of Materials Chemistry, 2001, 11, 3291-3295.	6.7	60
171	Immobilization of chlorophyll derivatives into mesoporous silica and energy transfer between the chromophores in mesopores. Chemical Communications, 2001, , 2002-2003.	2.2	32
172	Synthesis of Layered Inorganicâ^'Organic Nanocomposite Films from Mono-, Di-, and Trimethoxy(alkyl)silaneâ^'Tetramethoxysilane Systems. Chemistry of Materials, 2001, 13, 3610-3616.	3.2	95
173	Interlamellar Esterification of H-Magadiite with Aliphatic Alcohols. Chemistry of Materials, 2001, 13, 3747-3753.	3.2	60
174	Synthesis of Silylated Derivatives of a Layered Polysilicate Kanemite with Mono-, Di-, and Trichloro(alkyl)silanes. Chemistry of Materials, 2001, 13, 3603-3609.	3.2	90
175	Formation of Ordered Silica-Organic Hybrids by Self-Assembly of Hydrolyzed Organoalkoxysilanes with Long Organic Chains. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	0
176	Formation of Ordered Silica–Organic Hybrids by Self-Assembly of Hydrolyzed Organoalkoxysilanes with Long Organic Chains. Materials Research Society Symposia Proceedings, 2001, 707, 281.	0.1	0
177	Preparation and pyrolysis of a blended precursor possessing Ti?N and Al?N bonds. Applied Organometallic Chemistry, 2001, 15, 710-716.	1.7	11
178	Immobilization of Photosynthetic Pigments into Silica-Surfactant Nanocomposite Films. Journal of Sol-Gel Science and Technology, 2000, 19, 543-547.	1.1	14
179	Characterization of Silanol Groups in Protonated Magadiite by 1H and 2H Solid-State Nuclear Magnetic Resonance. Clays and Clay Minerals, 2000, 48, 632-637.	0.6	15
180	Solid State Intercalation of 4,4′-Bipyridine into the Interlayer Space of Montmorillonites. Molecular Crystals and Liquid Crystals, 2000, 341, 351-356.	0.3	12

#	Article	IF	CITATIONS
181	Aluminium-containing mesoporous silica films as nano-vessels for organic photochemical reactions. Chemical Communications, 2000, , 2441-2442.	2.2	39
182	Orientation of Guest Molecules and Formation of Mesoporous Silica Induced by Layered Silicate-Organic Interactions. Molecular Crystals and Liquid Crystals, 2000, 341, 283-288.	0.3	1
183	Modification of the Interlayer Surface of Kaolinite with Methoxy Groups. Langmuir, 2000, 16, 5506-5508.	1.6	104
184	Aggregation of a Cationic Cyanine Dye Intercalated in the Interlayer Space of a Layered Titanate Na ₂ Ti ₃ O ₇ . Molecular Crystals and Liquid Crystals, 2000, 341, 259-264.	0.3	10
185	Incorporation of Tris(2,2â€~-bipyridine)ruthenium(II) in a Synthetic Swelling Mica with Poly(vinylpyrrolidone). Langmuir, 2000, 16, 4202-4206.	1.6	43
186	Interlamellar Grafting of γ-Methacryloxypropylsilyl Groups on Magadiite and Copolymerization with Methyl Methacrylate. Chemistry of Materials, 2000, 12, 1702-1707.	3.2	135
187	Formation of a Continuous Mesoporous Silica Film with Fully Aligned Mesochannels on a Glass Substrate. Chemistry of Materials, 2000, 12, 49-54.	3.2	130
188	Pyrolysis of Poly(isopropyliminoalane) to Aluminum Nitride. Journal of the American Ceramic Society, 2000, 83, 2436-2440.	1.9	21
189	Direct Observation of Mesoporous Silica by High Resolution Scanning Electron Microscopy. Advanced Materials, 1999, 11, 857-860.	11.1	28
190	Organic Modification of FSM-Type Mesoporous Silicas Derived from Kanemite by Silylation. Langmuir, 1999, 15, 2794-2798.	1.6	84
191	New Conversion Reaction of an Aurivillius Phase into the Protonated Form of the Layered Perovskite by the Selective Leaching of the Bismuth Oxide Sheet. Journal of the American Chemical Society, 1999, 121, 11601-11602.	6.6	59
192	Synthesis and Structural Study of the KNb4O6-Type Compound Journal of the Ceramic Society of Japan, 1999, 107, 318-321.	1.3	3
193	Esterification of the Silanol Groups in the Mesoporous Silica Derived from Kanemite. Journal of Porous Materials, 1998, 5, 127-132.	1.3	66
194	Pyrolytic conversion of precursors prepared in Ti(NMe2)4-diamine systems. Applied Organometallic Chemistry, 1998, 12, 787-792.	1.7	6
195	Thermotropic Behavior of the Silicaâ~'Alkyltrimethylammonium Chloride Mesostructured Materials. Chemistry of Materials, 1998, 10, 1382-1385.	3.2	39
196	Control of Interlayer Microstructures of a Layered Silicate by Surface Modification with Organochlorosilanes. Journal of the American Chemical Society, 1998, 120, 7361-7362.	6.6	155
197	A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. Journal of Materials Research, 1998, 13, 930-934.	1.2	86
198	Synthesis of Na1-xLnxNbO3 (Ln=La, Nd, Sm, Gd) and their Structures and Electrical Properties. Materials Research Society Symposia Proceedings, 1998, 547, 267.	0.1	0

#	Article	IF	CITATIONS
199	Pyrolytic Preparation of Gallium Nitride From [Ga(NEt2)3]2 and its Ammonolysis Compound. Materials Research Society Symposia Proceedings, 1997, 468, 93.	0.1	1
200	Preparation of Inorganic–Organic Nanocomposites through Intercalation of Organoammonium lons into Layered Silicates. Bulletin of the Chemical Society of Japan, 1997, 70, 2593-2618.	2.0	422
201	Polymerization reactions in an Al(OBu s)3â^'(COOH)2 system. Journal of Sol-Gel Science and Technology, 1997, 8, 95-99.	1.1	Ο
202	Characterization of Aluminum Nitride from a Precursor Poly (isopropyliminoalane). Journal of the Ceramic Society of Japan, 1996, 104, 143-145.	1.3	16
203	Silica-based mesoporous molecular sieves derived from a layered polysilicate kanemite?A review. Journal of Porous Materials, 1996, 3, 107-114.	1.3	41
204	Solid-state ion exchange reactions between homoionic-montmorillonites and organoammonium salts. Journal of Porous Materials, 1995, 1, 85-89.	1.3	23
205	Formation of Methoxy-Modified Interlayer Surface via the Reaction between Methanol and Layered Perovskite HLaNb2O7.cntdot.xH2O. Inorganic Chemistry, 1995, 34, 5065-5069.	1.9	61
206	Photofunctions of Intercalation Compounds. Chemical Reviews, 1995, 95, 399-438.	23.0	999
207	Inorganic-Organic Nanocomposites Formed through Intercalation Reactions of Layered Solids Hyomen Kagaku, 1995, 16, 694-698.	0.0	1
208	29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. II. Methyltriethoxysilane. Journal of Non-Crystalline Solids, 1994, 167, 21-28.	1.5	94
209	Synthesis of La _{1-<i>x</i>} M _{<i>x</i>} TiO ₃ (M = Na, K; 0 ≤i>x≤0.4) and the electrical properties. Phase Transitions, 1993, 41, 137-141.	0.6	5
210	Evidence for the formation of Bi2(Sr2-xCax)CuOywith the 2201 structure. Phase Transitions, 1993, 41, 205-208.	0.6	0
211	Silicon-29 NMR Study on the Initial Stage of the Co-Hydrolysis of Tetraethoxysilane and Methyltriethoxysilane. Materials Research Society Symposia Proceedings, 1992, 271, 231.	0.1	10
212	Layered Inorganic-Organic Nanocomposites: Application to Photofunctional Materials and Conversion to Inorganic Microporous Materials. Materials Research Society Symposia Proceedings, 1992, 286, 335.	0.1	0
213	Preparation of Aluminum Nitride from Poly (isopropyliminoalane). Journal of the Ceramic Society of Japan, 1992, 100, 101-103.	1.3	17
214	Clay-Organic Nano-Composite. Journal of the Ceramic Society of Japan, 1992, 100, 413-416.	1.3	30
215	Solid-State Intercalation of Naphthalene and Anthracene into Alkylammonium-Montmorillonites. Clays and Clay Minerals, 1992, 40, 485-490.	0.6	68
216	Preparation of Montmorillonite- <i>p</i> -Aminoazobenzene Intercalation Compounds and Their Photochemical Behavior. Materials Research Society Symposia Proceedings, 1991, 233, 89.	0.1	40

#	Article	IF	CITATIONS
217	Photoreduction Of Methylviologen In The Interlayers Of Some Layered Titanates And Niobates. Materials Research Society Symposia Proceedings, 1991, 233, 169.	0.1	7
218	The Preparation of Alkyltrimethylammonium–Kanemite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 1990, 63, 988-992.	2.0	1,721
219	Polymerization of Hydrolysis Products of Methyltriethoxysilane in Aqueous Solutions. Journal of the Ceramic Society of Japan, 1990, 98, 647-652.	1.3	11
220	Kaolinite-Pyridine Intercalation Compound derived from Hydrated Kaolinite. Clays and Clay Minerals, 1989, 37, 143-150.	0.6	32
221	Carbothermal reduction process of precursors derived from alkoxides for synthesis of boron-doped SiC powder. Journal of Materials Science Letters, 1989, 8, 944-946.	0.5	10
222	The carbothermal reduction process of a montmorillonite-polyacrylonitrile intercalation compound. Journal of Materials Science, 1988, 23, 3572-3577.	1.7	25
223	Preparation of Silicon Carbide and Aluminum Silicon Carbide from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the American Ceramic Society, 1988, 71, C-325-C-327.	1.9	9
224	Organic derivatives of layered polysilicates. Reactivity of Solids, 1988, 5, 167-175.	0.3	87
225	Preparation of Titanium Nitride (TiN1-x-yCxOy) from Ti(OPri)4-Triethanolamine Condensation Product by Pyrolysis. Materials Research Society Symposia Proceedings, 1988, 121, 575.	0.1	6
226	Formation of Boron Nitride and Boron Carbide by Pyrolysis of Condensation Products of Boric Acid and Ethanolamines. Journal of the Ceramic Association Japan, 1987, 95, 140-144.	0.2	5
227	The Preparation of a Magadiite-Polyacrylonitrile Intercalation Compound and Its Conversion to Silicon Carbide. Journal of the Ceramic Association Japan, 1987, 95, 127-133.	0.2	2
228	Si ₃ N ₄ Formation in the Carbothermal Reduction Process of a Magadiite-Polyacrylonitrile Intercalation Compound. Journal of the Ceramic Association Japan, 1987, 95, 134-139.	0.2	4
229	Carbide Formation from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the Ceramic Association Japan, 1986, 94, 48-53.	0.2	4
230	Preparation of Boron Nitride and Boron Carbide by Thermal Treatment of Boric Acid-Glycerin Condensation Product as a Precursor. Journal of the Ceramic Association Japan, 1986, 94, 71-75.	0.2	7
231	Synthesis of ?-Sialon from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the American Ceramic Society, 1984, 67, c247-c248.	1.9	49
232	Preparation and Electrical Properties of Quaternary Ammonium Montmorillonite-Polystyrene Complexes. Clays and Clay Minerals, 1981, 29, 294-298.	0.6	69
233	Synthesis of the Trimethylsilylation Derivative of Halloysite. Clays and Clay Minerals, 1979, 27, 53-56.	0.6	12
234	Title is missing!. Die Makromolekulare Chemie, 1978, 179, 2793-2797.	1.1	5

#	Article	IF	CITATIONS
235	Preparation of Organosilicate Compounds from Phlogopite by Trimethylsilylation. Clays and Clay Minerals, 1978, 26, 418-422.	0.6	6
236	Trimethylsilylation of Biotite. Clays and Clay Minerals, 1977, 25, 407-410.	0.6	9
237	Preparation of mesoporous nitrogen-doped titania comprising large crystallites with low thermal conductivity. Nanoscale Advances, 0, , .	2.2	0
238	Photomechanical organosiloxane films derived from azobenzene-modified di- and tri-alkoxysilanes. Journal of Sol-Gel Science and Technology, 0, , 1.	1.1	0
239	Anisotropic Crystal Growth of Layered Nickel Hydroxide along the Stacking Direction Using Amine Ligands. Inorganic Chemistry, 0, , .	1.9	2