
Panpan Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3162333/publications.pdf Version: 2024-02-01

Δανίδανι **Δ**ανί

#	Article	IF	CITATIONS
1	A facile construction of bifunctional core-shell magnetic fluorescent Fe3O4@YVO4:Eu3+ microspheres for latent fingerprint detection. Journal of Colloid and Interface Science, 2022, 605, 425-431.	9.4	27
2	Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magnetoâ€optic information recognition. InformaÄnÃ-Materiály, 2022, 4, .	17.3	15
3	A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction. Chinese Chemical Letters, 2021, 32, 2159-2163.	9.0	26
4	Structure Engineering of Yolk–Shell Magnetic Mesoporous Silica Microspheres with Broccoli‣ike Morphology for Efficient Catalysis and Enhanced Cellular Uptake. Small, 2021, 17, e2006925.	10.0	16
5	One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Research, 2021, 14, 4197-4203.	10.4	9
6	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Advanced Science, 2021, 8, e2004586.	11.2	28
7	Interface Assembly to Magnetic Mesoporous Organosilica Microspheres with Tunable Surface Roughness as Advanced Catalyst Carriers and Adsorbents. ACS Applied Materials & Interfaces, 2021, 13, 36138-36146.	8.0	14
8	An Efficient Emulsionâ€induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. Advanced Functional Materials, 2020, 30, 2002488.	14.9	38
9	Interface Coassembly and Polymerization on Magnetic Colloids: Toward Core–Shell Functional Mesoporous Polymer Microspheres and Their Carbon Derivatives. Advanced Science, 2020, 7, 2000443.	11.2	37
10	Nonsacrificial Selfâ€Template Synthesis of Colloidal Magnetic Yolk–Shell Mesoporous Organosilicas for Efficient Oil/Water Interface Catalysis. Small, 2019, 15, e1805465.	10.0	40
11	Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2019, 174, 70-79.	5.0	88
12	3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H ₂ O ₂ . Advanced Healthcare Materials, 2018, 7, e1800149.	7.6	28
13	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	21.0	96
14	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	13.7	187
15	Matrine prevents bone loss in ovariectomized mice by inhibiting RANKLâ€induced osteoclastogenesis. FASEB Journal, 2017, 31, 4855-4865.	0.5	77
16	Facile preparation of biphasic-induced magnetic icariin-loaded composite microcapsules by automated in situ click technology. Colloids and Surfaces B: Biointerfaces, 2016, 140, 50-59.	5.0	15