Ana MarÃ-a Dejoz GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161931/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance. Journal of Catalysis, 2022, 408, 388-400.	6.2	12
2	Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes. Materials, 2021, 14, 7120.	2.9	7
3	Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Chemistry - A European Journal, 2020, 26, 9371-9381.	3.3	7
4	Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation. Applied Catalysis A: General, 2019, 582, 117107.	4.3	8
5	Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds. Chemosphere, 2019, 219, 286-295.	8.2	17
6	Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs. Materials, 2018, 11, 1387.	2.9	15
7	Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts, 2017, 7, 96.	3.5	39
8	Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts. Fuel Processing Technology, 2015, 134, 290-296.	7.2	4
9	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today, 2015, 254, 12-20.	4.4	32
10	Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catalysis Today, 2015, 248, 48-57.	4.4	40
11	Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni–W–O catalysts. Fuel Processing Technology, 2014, 119, 105-113.	7.2	19
12	The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chemical Engineering Journal, 2013, 229, 547-558.	12.7	87
13	Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General, 2013, 450, 169-177.	4.3	49
14	Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chemical Communications, 2012, 48, 5316.	4.1	32
15	Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 2012, 187, 391-400.	12.7	44
16	Oxidative dehydrogenation of ethane over Ni–W–O mixed metal oxide catalysts. Journal of Catalysis, 2011, 280, 28-39.	6.2	108
17	Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 2011, 175, 271-278.	12.7	64
18	Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A: General, 2010, 386, 16-27.	4.3	164

Ana MarÃa Dejoz GarcÃa

#	Article	IF	CITATIONS
19	Reaction products and pathways in the selective oxidation of C2–C4 alkanes on MoVTeNb mixed oxide catalysts. Catalysis Today, 2010, 157, 291-296.	4.4	39
20	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19
21	Supported Ni–W–O Mixed Oxides as Selective Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2009, 52, 751-757.	2.8	38
22	Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials, 2009, 171, 393-399.	12.4	24
23	Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 2009, 142, 272-277.	4.4	57
24	Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B: Environmental, 2008, 84, 176-184.	20.2	221
25	Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 2007, 252, 271-280.	6.2	94
26	Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 2006, 117, 228-233.	4.4	78
27	Selective oxidative dehydrogenation of ethane over MoVSbO mixed oxide catalysts. Applied Catalysis A: General, 2006, 298, 16-23.	4.3	72
28	Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts. Topics in Catalysis, 2006, 38, 59-67.	2.8	39
29	Oxidative dehydrogenation of ethane on Te-containing MoVNbO catalysts. Catalysis Today, 2004, 91-92, 241-245.	4.4	52
30	Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 2004, 225, 428-438.	6.2	229
31	Mo–V–Nb mixed oxides as catalysts in the selective oxidation of ethane. Catalysis Today, 2003, 78, 507-512.	4.4	56
32	The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chemical Communications, 2002, , 1906-1907.	4.1	134
33	SiO2-supported vanadium magnesium mixed oxides as selective catalysts for the oxydehydrogenation of short chain alkanes. Applied Catalysis A: General, 2001, 208, 99-110.	4.3	26
34	V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Applied Catalysis A: General, 2001, 209, 155-164.	4.3	112
35	Textural and Spectroscopic Characterisation of vanadium MCM-41 materials. Application to gas-phase catalysis Studies in Surface Science and Catalysis, 2000, 128, 279-288.	1.5	1
36	Oxidative dehydrogenation of n-butane and 1-butene on undoped and K-doped VOx/Al2O3 catalysts. Catalysis Today, 2000, 61, 361-367.	4.4	26

#	Article	IF	CITATIONS
37	MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catalysis Today, 2000, 61, 101-107.	4.4	33
38	Vapor–liquid equilibrium of binary mixtures of trichloroethylene with 1-pentanol, 2-methyl-1-butanol and 3-methyl-1-butanol at 100 kPa. Fluid Phase Equilibria, 1999, 155, 229-239.	2.5	9
39	Vaporâ^'Liquid Equilibrium of Binary Mixtures of Tetrachloroethylene with 1-Pentanol, 3-Methyl-1-butanol, and 2-Methyl-1-butanol. Journal of Chemical & Engineering Data, 1999, 44, 286-290.	1.9	3
40	Phase equilibria and variation of the azeotropic composition with pressure for binary mixtures of 1-propanol + chlorobenzene and 1-butanol + chlorobenzene. Fluid Phase Equilibria, 1998, 145, 287-299.	2.5	10
41	Vapor–liquid equilibrium of binary mixtures of chlorobenzene with 3-methyl-1-butanol, 3-methyl-2-butanol and 2-methyl-2-butanol, at 100 kPa. Fluid Phase Equilibria, 1998, 153, 265-277.	2.5	4
42	Isobaric Vaporâ^'Liquid Equilibrium of Binary Mixtures of 1-Butanol + Chlorobenzene and 2-Butanol + Chlorobenzene at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1997, 42, 374-378.	1.9	14
43	Kinetic Study of the Oxidation ofn-Butane on Vanadium Oxide Supported on Al/Mg Mixed Oxide. Industrial & Engineering Chemistry Research, 1997, 36, 2588-2596.	3.7	34
44	Isobaric vapor-liquid equilibrium of binary mixtures of 1-propanol + chlorobenzene and 2-propanol + chlorobenzene. Fluid Phase Equilibria, 1997, 134, 151-161.	2.5	18
45	Isobaric Vaporâ^'Liquid Equilibria of Trichloroethylene with 1-Butanol and 2-Butanol at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1996, 41, 89-92.	1.9	15
46	Isobaric Vaporâ^'Liquid Equilibria of Tetrachloroethylene + 1-Propanol and +2-Propanol at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1996, 41, 1361-1365.	1.9	16
47	Isobaric Vaporâ^'Liquid Equilibria for Binary Systems Composed of Octane, Decane, and Dodecane at 20 kPa. Journal of Chemical & Engineering Data, 1996, 41, 93-96.	1.9	38
48	Preparation, characterization and catalytic properties of vanadium oxides supported on calcined Mg/Al-hydrotalcite. Applied Catalysis A: General, 1995, 132, 41-59.	4.3	55
49	Influence of the Acid-Base Character of Supported Vanadium Catalysts on Their Catalytic Properties for the Oxidative Dehydrogenation of n-Butane. Journal of Catalysis, 1995, 157, 271-282.	6.2	162
50	The effect of potassium on the selective oxidation ofn-butane and ethane over Al2O3-supported vanadia catalysts. Catalysis Letters, 1995, 34, 51-58.	2.6	64
51	Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa. Journal of Chemical & Engineering Data, 1995, 40, 290-292.	1.9	15
52	Oxidative dehydrogenation of propane and n-butane on V-Mg based catalysts. Studies in Surface Science and Catalysis, 1994, , 113-123.	1.5	31