
Sally A Peyman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral nematic liquid crystal droplets as a basis for sensor systems. Molecular Systems Design and Engineering, 2022, 7, 607-621.	1.7	15
2	Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biology Plus, 2022, 14, 100109.	1.9	7
3	A novel, proof-of-concept electrochemical impedimetric biosensor based on extracellular matrix protein–adhesin interaction. Sensors & Diagnostics, 2022, 1, 1003-1013.	1.9	3
4	Production of giant unilamellar vesicles and encapsulation of lyotropic nematic liquid crystals. Soft Matter, 2021, 17, 2234-2241.	1.2	15
5	Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics, 2021, 11, 1259.	1.3	5
6	10.1063/5.0040213.1., 2021,,.		0
7	Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. Review of Scientific Instruments, 2021, 92, 074105.	0.6	15
8	Targeted microbubbles carrying lipid-oil-nanodroplets for ultrasound-triggered delivery of the hydrophobic drug, combretastatin A4. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102401.	1.7	10
9	Nanobubbles for therapeutic delivery: Production, stability and current prospects. Current Opinion in Colloid and Interface Science, 2021, 54, 101456.	3.4	29
10	Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces. Crystals, 2021, 11, 65.	1.0	5
11	The Trimeric Autotransporter Adhesin YadA of Yersinia enterocolitica Serotype O:9 Binds Glycan Moieties. Frontiers in Microbiology, 2021, 12, 738818.	1.5	6
12	Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics, 2020, 10, 10973-10992.	4.6	45
13	Freeze-Dried Therapeutic Microbubbles: Stability and Gas Exchange. ACS Applied Bio Materials, 2020, 3, 7840-7848.	2.3	6
14	Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy. Analyst, The, 2020, 145, 5878-5888.	1.7	10
15	Control of Director Fields in Phospholipid-Coated Liquid Crystal Droplets. Langmuir, 2020, 36, 6436-6446.	1.6	20
16	Nested Nanobubbles for Ultrasound-Triggered Drug Release. ACS Applied Materials & Interfaces, 2020, 12, 29085-29093.	4.0	27
17	High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. Journal of Controlled Release, 2020, 326, 13-24.	4.8	38
18	Physical Biomarkers of Disease Progression: On-Chip Monitoring of Changes in Mechanobiology of Colorectal Cancer Cells. Scientific Reports, 2020, 10, 3254.	1.6	15

SALLY A PEYMAN

#	Article	IF	CITATIONS
19	A Quantum Heat Exchanger for Nanotechnology. Entropy, 2020, 22, 379.	1.1	О
20	A review on impedimetric immunosensors for pathogen and biomarker detection. Medical Microbiology and Immunology, 2020, 209, 343-362.	2.6	119
21	Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior. Biophysical Journal, 2019, 116, 1127-1135.	0.2	68
22	Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab on A Chip, 2019, 19, 1082-1089.	3.1	65
23	Current and Emerging 3D Models to Study Breast Cancer. Advances in Experimental Medicine and Biology, 2019, 1152, 413-427.	0.8	20
24	Combined flow-focus and self-assembly routes for the formation of lipid stabilized oil-shelled microbubbles. Microsystems and Nanoengineering, 2018, 4, .	3.4	11
25	Tandem fluorescence and Raman (fluoRaman) characterisation of a novel photosensitiser in colorectal cancer cell line SW480. Analyst, The, 2018, 143, 6113-6120.	1.7	13
26	Biochemical fingerprint of colorectal cancer cell lines using labelâ€free live singleâ€cell Raman spectroscopy, 2018, 49, 1323-1332.	1.2	32
27	Characterisation of Liposome-Loaded Microbubble Populations for Subharmonic Imaging. Ultrasound in Medicine and Biology, 2017, 43, 346-356.	0.7	29
28	Evaluation of lipid-stabilised tripropionin nanodroplets as a delivery route for combretastatin A4. International Journal of Pharmaceutics, 2017, 526, 547-555.	2.6	13
29	The influence of intercalating perfluorohexane into lipid shells on nano and microbubble stability. Soft Matter, 2016, 12, 7223-7230.	1.2	36
30	On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging. Lab on A Chip, 2016, 16, 679-687.	3.1	61
31	Diamagnetic repulsion of particles for multilaminar flow assays. RSC Advances, 2015, 5, 103776-103781.	1.7	6
32	On-Chip Determination of C-Reactive Protein Using Magnetic Particles in Continuous Flow. Analytical Chemistry, 2014, 86, 10552-10559.	3.2	39
33	Self-assembly of actin scaffolds on lipid microbubbles. Soft Matter, 2014, 10, 694-700.	1.2	9
34	Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Advances, 2013, 3, 7209.	1.7	33
35	Nanomechanics of Lipid Encapsulated Microbubbles with Functional Coatings. Langmuir, 2013, 29, 4096-4103.	1.6	36
36	Research Spotlight: Microbubbles for therapeutic delivery. Therapeutic Delivery, 2013, 4, 539-542.	1.2	9

SALLY A PEYMAN

#	Article	IF	CITATIONS
37	Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab on A Chip, 2012, 12, 4544.	3.1	80
38	Single molecule protein biophysics using chemically modified nanopores. , 2010, , .		3
39	The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. Journal of Magnetism and Magnetic Materials, 2009, 321, 4115-4122.	1.0	47
40	Diamagnetic repulsion—A versatile tool for label-free particle handling in microfluidic devices. Journal of Chromatography A, 2009, 1216, 9055-9062.	1.8	113
41	Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab on A Chip, 2009, 9, 3110.	3.1	91
42	Rapid on-chip multi-step (bio)chemical procedures in continuous flow – manoeuvring particles through co-laminar reagent streams. Chemical Communications, 2008, , 1220.	2.2	50
43	Targeting Tumour Vasculature using Integrin $\hat{I}\pm v\hat{I}^23$ - Observation of Liposome Accumulation in Microfluidic Vasculature Networks. , 0, , .		0